A Quantitative Evaluation of the Nighttime Visual Sign Inspection Method
DOI:
https://doi.org/10.5399/osu/jtrf.44.1.791Abstract
A research project to determine the appropriate sign inspection and replacement procedure was conducted at North Carolina State University and sponsored by the North Carolina DOT. The purpose was to determine the optimum strategy for sign inspection and replacement under different conditions to respond to the pending retroreflectivity requirements. This paper reports on a spreadsheet tool developed to quantitatively evaluate the effectiveness of different sign inspection and replacement scenarios. The spreadsheet was designed for yellow and red engineer-grade sign sheetings, and takes into account sign vandalism and knock-downs as well as normal sign aging. The spreadsheet provides estimates of the number of signs in place that would not meet the minimum retroreflectivity standard and the cost of the sign inspection and replacement program.
The results from a number of trials of the spreadsheet show that agencies that generally conform to the key assumptions made to build the spreadsheet should consider replacing all signs every seven years, as that insures that no aged signs are in place at a relatively low cost. If total replacement is not possible, an inspection program using retroreflectometers every three years appears very competitive in its effectiveness with a program using typical visual inspection rates each year. The retroreflectometers appear to allow fewer deficient signs, while the typical visual inspection program costs are lower for a given vandalism rate. More conservative visual sign replacement rates do not appear to offer distinct advantages, because typical replacement rates with visual inspections every two or three years allow relatively high numbers of deficient signs to remain on the roads.