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Using three common methodologies for measuring airport efficiency, namely the productivity 
index method, Data Envelopment Analysis (DEA) method, and stochastic frontier analysis (SFA) 
method, this study examines the efficiency performances of 62 Canadian and U.S. airports. Unlike 
most previous studies, this study includes aeronautical and non-aeronautical outputs of airports 
as they are inexplicably tied to each other in airport production. The empirical results reveal that 
the efficiency scores and rankings measured by these alternative methods are quite similar to each 
other in the top 15 and bottom 15 ranked airports, whereas considerable differences exist among 
the airports in the middle range. We also found that the percentage of non-aeronautical revenue, 
passenger volume, average aircraft size, percentages of international and connecting traffic 
significantly affect our airport efficiency estimates in all of the three alternative approaches used.

INTRODUCTION

Airports have substantial market power over the majority of local traffic and airlines.  In many 
North American cities, airlines,1 passengers, and other airport users have limited choices when 
selecting airports.  Regulatory, geographical, economic, social, and political constraints all tend to 
hinder competition between airports. Therefore, unlike airline markets, competitive pressure cannot 
be relied on to exert enough pressures for airport managers to pay serious attention to improve 
productivity and efficiency.  However, by exposing inefficient airports to their stakeholders, the 
public and their regulatory authorities,2 airport benchmarking helps spur competitive forces and 
shake up conventional thinking on airport efficiency performance. 

The evolution of airport ownerships toward privatization and commercialization naturally 
leads airport managers to seek ways to gain insights into their operations and improve performance 
by benchmarking themselves against other airports. As benchmarking identifies the best practice 
standards for operations and services, it provides guidelines for airport managers to improve 
performance and deal with delays and congestion. This is a major reason why recently the ACI-
North America has started to do benchmarking performance of its member airports, although its 
benchmarking results are not public and are used for internal purposes.

During the past two decades, there has been a plethora of research on airport benchmarking. 
Liebert and Niemeier (2010) reviewed and summarized literature on airport benchmarking, and 
found that there are many inconclusive or conflicting findings, including the effects of ownership, 
privatization, and size on airport performance.3 The discrepancies in the results of airport 
benchmarking may due to the differences, including methodology and underlying assumptions, 
sample data and years, variables used for inputs, outputs and heterogeneities among the airports, 
such as ownership, regulatory framework, and other factors beyond management control. 

Most studies in airport benchmarking utilize a single method to measure airport efficiency. So 
far, only a few studies have measured efficiencies by using different methodologies. Cullinane et 
al. (2006) applied data envelopment analysis (DEA) and stochastic frontier analysis (SFA) in the 
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container port industry and found that there is a high degree of correlation between the results of 
the two approaches. 

Coelli and Perelman (1999) compared three alternative methodologies: (1) parametric frontier 
using linear programming approach; (2) parametric frontier using corrected OLS method (including 
SFA); and (3) non-parametric piece-wise linear frontier using DEA. When applying them to a 
pool of data of 17 European railways from 1988 to 1993, the technical efficiencies emerging from 
the three methods displayed no substantial differences, with positive and significant correlations 
between each other. The authors claimed that a researcher could safely select one of these methods 
without too much concern for their choice having a large influence upon results. 

For the aviation industry, Windle and Dresner (1995) compared seven methods of productivity 
measurement using 1983 U.S. airline data, and concluded that: “carrier rankings from the cost 
function decomposition bear no relationship to the rankings for the gross measure of productivity.” 
This finding thus supports the need for second stage (regression) analysis to control for differences 
in output characteristics, especially when non-parametric methods such as TFP and DEA are used. 
Pels et al. (2001) compared the efficiency results of European airports measured from DEA and 
SFA. Unfortunately, this paper applies these two measurement methods separately to each of airside 
operations and terminal side operations as if they are two independent businesses and do not include 
non-aeronautical revenue outputs.  Based on the dataset of European airports, the results emerging 
from the two methods were reasonably consistent despite the fact that SFA produced less dispersed 
efficiency scores. 

As stated in Oum et al. (1992), productivity studies in the transportation industry using different 
measures of outputs and inputs cannot be compared directly with each other. To the best of our 
knowledge, no research has been directed toward the comparison between different methodologies 
and their empirical results in airport benchmarking. This study aims to offer the first step toward 
filling this gap. More importantly perhaps, to the knowledge of the authors, no airport performance 
benchmarking paper published so far treated both aeronautical operations and non-aeronautical 
operations within a single airport firm context.  The omission of non-aeronautical revenue outputs 
invites bias against the airports that have tried to generate more revenue from commercial and 
business activities so that they could pass on the benefits to airlines, passengers, shippers, and 
other airport users by lowering airside charges.  The size of the bias would be enormous if it is 
considered that major airports generate anywhere between 30% and 70% of their total revenues 
from non-aeronautical services while in general airports’ inputs are inseparable between those used 
to generate aeronautical revenues and others for generating non-aeronautical services from airports’  
available accounting data.

The main objective of this study is to review and empirically compare the results of the three 
key methodologies employed in measuring airport efficiency, namely, productivity index method, 
DEA method, and SFA method using comprehensive output data, which include both aeronautical 
services outputs and non-aeronautical services outputs. The dataset consists of a cross-section 
of 55 U.S. airports and seven Canadian airports in 2006. There are several reasons for choosing 
North American airports. First, North America is currently the largest air transport market in the 
world. Second, the ownership and regulatory framework of North American airports are relatively 
consistent: airports are owned and/or operated either by government agencies or by airport 
authorities. Third, there are extensive and reliable data for airports in North America, which make it 
possible to conduct a valid study using relatively consistent data.

The rest of the study is organized as follows: the next section reviews the three methodologies 
of efficiency measurement (Index Number Method, DEA, and SFA), followed by the description of 
the data used in this study. This is followed by the estimation results and comparisons between the 
efficiencies scores and rankings stemming from the three methods, and the conclusion.
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METHODOLOGIES ON PRODUCTIVITY AND EFFICIENCY MEASUREMENT

Productivity of a firm is the ratio of the output(s) produced to the input(s) used to produce the 
output(s) (Coelli et al. 2005). Hensher and Walters (1993) asserted that there are three quantitative 
methods to examine the productivity and efficiency among government enterprises, namely: 
(1) Non-parametric Index Number Method, (2) DEA, and (3) SFA. Liebert and Niemeier (2010), 
Forsyth (2000) and Oum et al. (2008) have provided an overview of the quantitative methods used 
for airport productivity and efficiency measurement. Since details of each of these methods are 
available in the papers just cited and many other sources, this section will only briefly describe and 
compare the major properties of the three methods. 

Index Number Method

As a non-parametric approach, Index Number Method directly defines productivity as output index 
over input index. The method is easy to conduct for single output and input firms. However, airports 
utilize multiple inputs such as labor, capital, and other resources to produce various services for both 
airlines and passengers. Similar to Oum et al. (2006) in the airport industry and Obeng et al. (1992) 
in public transit systems, this paper uses the multilateral index number method proposed by Caves, 
Christensen, and Diewert (1982) to aggregate inputs and outputs. The total factor productivity of a 
firm is calculated as the ratio of aggregate output index over aggregate input index.

Unlike other inputs, capital cost is usually quasi-fixed and cannot be easily adjusted in the short-
to-medium term.  It is a major challenge to measure capital inputs and costs accurately, as well as to 
collect consistent and comparable data on capital expenditures. This is because 1) expenditures on 
capital equipment, buildings, and other infrastructural costs such as runways and terminals are often 
invested over many years and may be “hidden” in the explicit (or published) costs; 2) facilities at 
airports may be built and operated by airlines or other enterprises; and 3) the sources of financing 
and accounting systems vary among airports. Other reasons are 1) some direct and indirect subsidies 
are not in financial statements, 2) book value data do not resemble replacement value of the capital 
inputs, and 3) taxation and interest rates vary across states and cities.  In the early stage of the ATRS 
(2001-2011) airport benchmarking, the task force examined the book values of capital accounts of 
U.S. and Canadian airports, and concluded that those capital accounting data are not comparable at 
all across airports, and cannot be relied on for any valid study.  Consequently, the task force decided 
to focus on measuring and comparing just the operating efficiency and variable input costs of the 
airports, excluding capital inputs from their analysis.4

Following the well-known procedure devised by Caves, Christensen and Diewert (1982), the 
variable factor productivity (VFP) model used in this study is computed as follows:

(1)    

where 

FPk is the productivity of kth firm; Yik and Xik represent the ith output and input of the kth firm 
respectively; Rik and Wik are the weights for the ith output and input of the kth firm, respectively; A 
bar over weights represents sample arithmetic mean, while a tilde demonstrates geometric mean. 
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As implied from equation (1), the VFP index is formed by a series of binary comparisons 
between each observation and the sample mean. Ideally, revenue and cost elasticities should be 
used for output and input, respectively. However, as those numbers are usually not obtainable 
for most industries, including airports, Diewert (1992) suggests using revenue and cost shares as 
approximations. This adjustment comes with further assumptions on constant returns to scale (CRS) 
across all outputs.5 

Data Envelopment Analysis (DEA) 

DEA is a non-parametric frontier method and originated from a study in operations research, and 
was first proposed by Charnes et al. (1978). DEA uses linear programming to construct a piecewise 
linear “efficient frontier” that envelops Decision-Making Units (DMUs) or firms based on outputs 
and input quantities. Efficiency indices are then calculated relative to this frontier. 

The model is presented with n units with s outputs denoted by Y, and m inputs denoted by X. 
For technical efficiency,6 the following linear programming problem is solved under the assumption 
of constant returns to scale, i.e., the CCR model developed by Charnes et al. (1978):

(2)  Minθ,λ θ, subject to θx i – Xλ   0, Yλ – yi  0, λ  0

Where, θ is a scalar that indicates the radial contraction of all inputs, hence the technical efficiency 
(TE) score. λ is the weight of the efficient peers in the reference unit. The xi’s are the individual 
inputs and yi the outputs for the ith firm. X and Y represent all input and output matrices.

The BCC model as introduced by Banker et al. (1984) can handle variable returns to scale 
(RTS) by adding the following constraint to the original CCR model.7

(3)	 e’λ=1											         
				         
Where, e is a vector of one. The paper uses the CCR model with constant returns to scale in the first 
stage because the resulting (gross) DEA efficiency measures are more directly comparable with the 
(gross) VFP, which is computed assuming constant returns to scale as discussed previously. The 
second stage analysis controls for variable returns to scale by including an output scale variable in 
the regression.  

The DEA method distinguishes between input-oriented and output-oriented models. This study 
uses the input-oriented model because most previous studies, including Abbott and Wu (2002) and 
Pels et al. (2001, 2003), use it, and it is a plausible assumption that airports have more control over 
their inputs than outputs. Since air travel demand is derived demand depending directly on economic 
activities, airports have less control in generating aeronautical outputs (ATMs, air passenger, and air 
cargo volumes) than adjusting for variable inputs.8    

Stochastic Frontier Analysis (SFA)

Different from the productivity index number and DEA, SFA specifies the form of a production or 
cost function and identifies the inefficiency as a stochastic disturbance. Originally introduced by 
Aigner et al. (1976), the general form of stochastic frontier production function can be specified as 
follows:9

(4)  Yi  = f (xi;β) exp(Vi  – Ui )

Where, Yi represents the output of the ith firm; f(x i;β) is the deterministic core function of an 
input vector xi, and an unknown parametric vector β; Vi is a normally distributed random variable 
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that represents the effects of unobservable explanatory variables and random shocks. Ui is a non-
negative random variable representing inefficiency, and it is assumed to follow either half-normal, 
exponential, or gamma distribution.

As implied from equation (4), SFA explains output by a vector of inputs and a stochastic 
disturbance, which consists of two parts: a stochastic inefficiency, Ui and a traditional ‘noise’ term, 
Vi. While Vi could be either positive or negative, Ui is always positive. 

 For the deterministic part of efficiency, this study uses a translog specification, and as such, our 
SFA-production function can be written as follows:

(5)												          

				    			 
Where, Yi is aggregate output index for airport i; Xj is the jth input; Vi is assumed to follow the 
distribution N (0, σ2V); Ui is assumed to follow N (μ, σ2U) where μ≥0. The technical efficiency of 
airport i is then calculated as the ratio of its mean output to the input if it uses inputs most efficiently.

(6)												          
							     

The SFA production function is estimated by using the input quantity indices (labor input and 
soft cost input) and the output quantity index (aggregated using the multilateral index procedure 
discussed in the Index Number Method section). 

Comparison of Methodologies

Table 1 summarizes and compares key features of the three alternative methods. The index number 
method assumes that firms are allocatively efficient and under constant returns to scale.10  In contrast, 
DEA and SFA assume the continuity and convexity of the production set. SFA further assumes a 
particular form of inefficiency distribution: usually one of half-normal, exponential, and gamma 
distribution. As for data requirement, the productivity index number method demands the highest 
level of data in general.

All three methods have difficulty in precisely measuring capital costs, the DEA method allows 
for using physical measures of capital inputs such as terminal size, number and/or length of runway 
as approximation of capital inputs. The DEA method is thus easy to use with less demanding data. 
However, DEA efficiency index lacks “transitivity,” as DEA airport efficiency rankings can change 
substantially as one adds or drops one or more airports from the sample.11 In comparison, index 
number methods preserve the relative index values and rankings, even when one adds or drops one 
or more airports from the sample.

As the only parametric method, SFA involves a specification of frontier function, which enables 
it to conduct hypotheses tests and distinguish the sources of efficiency growth. Furthermore, as SFA 
does not assume that all firms are efficient, it allows the existence of systemic inefficiency in the 
error terms, and does not restrict the combined error term (which includes inefficiency distribution) 
to be assumed independently and identically distributed (i.i.d.). However, because use of SFA 
requires rigorous theoretical concept and complex computation, it is difficult to communicate the 
method to industry executives and practitioners. 
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Table 1: Comparison of Index Number Method, DEA and SFA

  Index Number Method DEA SFA

Assumption
•	 CRS
•	 Allocative efficiency

•	 Continuous and convex 
production set

•	 Inefficiency distribution
•	 Continuous and convex 

production set

Minimum 
Data 

Requirement

•	 Quantity of outputs and 
inputs

•	 Revenue/cost shares (or 
prices of outputs and 
inputs)

•	 Quantity of outputs and 
inputs

•	 Quantity of outputs and 
inputs

•	 Revenue shares of outputs 
(when using production 
function)

Strength

•	 Specification of 
functional form is not 
required 

•	 Easy to communicate

•	 Low data requirement 
(only output and inputs 
quantities are required)

•	 Specification of 
functional form is not 
required 

•	 Can use physical 
measures of capital as 
proxy for capital input 

•	 Accounts for statistical noise
•	 Able to conduct hypotheses 

test
•	 Firms on the frontier are 

not assumed to be 100% 
efficient. 

Weakness

•	 High data requirement
•	 Do not account for 

statistical noise

•	 Results are sensitive to 
outliers and to the set of 
DMUs included in the 
study

•	 Does not account for 
statistical noise

•	 Inability to distinguish 
among 100% efficiency 
DMUs

•	 High computational 
requirements

•	 requires the specification of 
functional form

DATA CONSTRUCTION 

Airports typically charge separately for handling aircrafts and passengers.  Therefore, the numbers 
of aircraft movements (ATMs) and passenger volume are two major aeronautical outputs of an 
airport.  Some argue that ATMs and passenger volume may be correlated and thus ATMs are not 
independent.  In practice, airlines could change the number of flights by adjusting load factors, 
seating arrangements, and the sizes of aircraft, making ATMs unnecessarily endogenous. As 
another airport output, air cargo services are handled directly by airlines or third-party logistics 
companies. In addition, airports only receive small amounts of usage fees for leasing space and 
terminals, cargo revenue covers only a small percentage of the total airport revenue, and it is thus not 
reported separately by most airports.  As such, air cargo is not included as an individual output when 
measuring the gross efficiency index, but it is included as an explanatory variable in the second 
stage regression analysis. 

Airports further rely on a number of non-aeronautical activities to generate additional revenues, 
such as duty-free shops, beverages, car parking and concessions. Such leasing and outsourcing 
activities offer flexibility to airport managers by allowing them to respond efficiently to market 
forces. Although non-aeronautical activities are different from traditional aeronautical services, 
their revenues have become increasingly important and account for somewhere between 30% and 
70% of total revenues of most of our sampled airports in 2006. As discussed in Oum et al. (2006) 
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and Zhang et al. (2010), aeronautical and non-aeronautical activities are not separable, and their 
demands are closely related to each other. Any efficiency measure computed without including non-
aeronautical service output would lead to serious bias against the airports that focus on increasing 
non-aeronautical revenue in order to reduce airport charges to airlines and passengers.  Therefore, 
this study includes non-aeronautical revenue as the third airport output.12

Regarding airports, certain resources are used to provide the services stated above. First, labor 
is one of the most important inputs. In 2006, personnel expenses accounted for somewhere between 
15% and 70% of total operating cost of the sampled airports. As most airports contract out part of 
their services, some employees are hired by outsourcing companies rather than airport operators. 
To avoid double counting, this study defines labor input as the full-time equivalent number of 
employees directly paid for by airport operators. Due to lack of consistent separate data on the 
outsourced services for the goods, services, and materials purchased directly by an airport, this study 
defines “soft cost input” to be other variable inputs other than labor input. The concept of soft cost 
input has been used in previous airport benchmarking studies including ATRS (2001-2011).  

In reality, there may be hundreds (if not thousands) of items included in our soft cost inputs 
that an airport uses during a year. Unless quantities and cost shares of all of these items for all of the 
airports in the sample are available to the analysts, it is impossible to create an aggregate quantity 
index for soft cost inputs. Therefore, the method of deflating aggregate soft cost input dollar values 
by purchasing power parity (PPP) of the year is used. Further, this is divided by the cost of living 
index of the city in which the airport is located. This is the next best feasible method for creating an 
approximate quantity index of the soft cost input for the airports in the sample.

Due to various geographic locations, airports in northern regions may incur additional snow 
removal costs. These airports have extra expenses in hiring additional staff and purchasing snow-
removal equipment and supplies. For some airports, snow removal costs could be significant, e.g., 
in 2006 snow removal cost was estimated to be $9.8 million for the New York JFK airport and over 
$10 million for the Denver airport. In order to create a fairer comparison, this study deducts snow 
removal costs from airport expenses.13 

To address the price differences between the U.S. and Canada, this study uses PPP14 to 
deflate non-aeronautical revenues. In order to deal with the price differentials of non-aeronautical 
revenue items across different cities within a country, the paper further applies the city-based Cost 
of Living Index (COLI)15 to deflate non-aeronautical revenue to compute the quantity index of 
non-aeronautical revenue output.16  Table 2 provides descriptive statistics for the airport inputs and 
outputs used in this study.

Table 2: Summary Statistics for Output and Input Variables
  Mean Median Maximum Minimum Std. Dev

No. Of Passenger 21,462,585 15,730,771 84,846,639 2,899,460 2,328,169

ATM (Air Transport Movements) 293,672 236,723 965,496 60,518 25,236

Non-Aeronautical Revenue Output1 88,944,551 63,268,716 288,188,161 13,237,866 8,131,930

No. of Employee 554 407 3,000 123 62

Soft-Cost Input2 71,637,907 50,521,745 249,734,305 9,708,149 8,061,183
1 Deflated by cost of living index.
2 Snow removal cost is deducted and deflated by cost of living index.

ESTIMATION RESULTS 

Based on an identical airport sample, efficiency scores and airport rankings are estimated and 
compared across the three methods. In addition, as gross efficiency measurement is affected by 
a number of airport characteristics and may not reflect airports’ managerial efficiencies, the paper 
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estimates and compares airport residual efficiencies after removing factors beyond managerial 
controls.

Comparison of “Gross” Efficiency Results Across the Alternative Methods

Since it is not meaningful to compare actual values of the gross efficiency scores generated by each 
of the three methods, the efficiency scores generated by each method are normalized around the 
most efficient airport by setting the value for the most efficient airport at one. After that, airport 
rankings obtained from these three methods are compared based on their gross efficiency scores.  
Table 3 reports these efficiency rankings obtained from the gross efficiency scores calculated by 
each method, together with the mean ranking, mean efficiency, and standard deviations. Some 
airports have consistent gross rankings regardless of methodologies used, for example, ATL, CLT, 
RDU, STL, MIA, and MSY. It is found that the rankings in the top and bottom ranges of the gross 
efficiency scores are quite robust with respect to methodology.  Meanwhile, the rankings of some 
other airports, especially the mid-ranked ones, are more sensitive to the methodology used.  For 
instance, SAT and RNO are ranked between 20 and 30 places in gross VFP and SFA, while these 
airports are estimated to have 100% gross efficiency by the DEA method. These considerable 
differences might be explained by the impossibility of the DEA method to distinguish among a large 
number of 100% efficient firms. 

Table 4 reports the Spearman’s rank order correlation coefficients of gross efficiency estimates 
by the three methods. In general, the three sets of efficiency scores are highly correlated with each 
other. The correlation between VFP and SFA is the highest, implying that both methods yield rather 
similar (gross) efficiency rankings.  Further, the sample is divided into three groups based on average 
efficiency scores: the top 15 airports (25% of the top-ranked airports), mid-ranked airports, and the 
bottom 15 airports (25% of the bottom-ranked airports), and their correlations compared again. The 
results reveal that the correlations for the mid-ranked airports are the lowest, especially between the 
DEA and SFA models, where it is 0.29 and not statistically significant.

Impact of Airport Specific Characteristics on Gross Efficiency Result

The gross efficiency scores derived in the previous section are affected by a number of airport 
characteristics, for example, airport output size, capacity constraint, level of commercial services, 
etc. As some of these factors are beyond an airport manager’s control, the gross measure of efficiency 
scores are not necessarily good estimators for airports’ managerial performances. Therefore, this 
section applies regression analysis to decompose gross efficiency scores estimating the impacts of 
airport characteristics on measured efficiency. 

A log-linear OLS (Ordinal Least Squares) model is used to decompose gross VFPs.  However, 
as gross DEA and SFA efficiency scores have an upper bound of 1.0, there might be a truncation bias 
if the OLS model is used. Thus, as has been done in many previous studies, a Tobit regression model 
(Tobin 1958) on DEA scores is used. 

Based on previous airport efficiency studies, including the ATRS Global Airport Performance 
benchmarking report, the following variables are incorporated in the regression function as these 
may affect the gross efficiency scores.
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Table 3:  Comparative Gross Efficiency Rankings by the Alternative Methods

Airport 
Code Airport Name VFP DEA SFA

Mean 
Ranking

Std. Dev. 
(Ranking)

Mean 
Efficiency 

Score
Std. Dev. 
(Score)

ATL Hartsfield-Jackson Atlanta International Airport 1 1 1 1 0 0.978 0.039

CLT Charlotte Douglas International Airport 2 1 3 2 1 0.974 0.041

MSP Minneapolis/St. Paul International Airport 3 1 2 2 1 0.953 0.041

RDU Raleigh-Durham International Airport 4 1 4 3 1.7 0.945 0.047

YVR Vancouver International Airport 5 1 5 3.7 2.3 0.926 0.07

YYC Calgary International Airport 6 1 6 4.3 2.9 0.904 0.096

RIC Richmond International Airport 7 1 9 5.7 4.2 0.897 0.102

ABQ Albuquerque International Sunport 9 1 13 7.7 6.1 0.863 0.149

LGA LaGuardia International Airport 15 1 11 9 7.2 0.845 0.182

TPA Tampa International Airport 10 18 8 12 5.3 0.807 0.106

SDF Louisville International-Standiford Field 8 14 17 13 4.6 0.848 0.106

MCO Orlando International Airport 20 13 10 14.3 5.1 0.818 0.182

RNO Reno/Tahoe International Airport 23 1 24 16 13 0.823 0.206

LAS Las Vegas McCarran International Airport 16 26 7 16.3 9.5 0.759 0.133

MEM Memphis International Airport 12 22 21 18.3 5.5 0.77 0.11

MKE General Mitchell International Airport 11 19 25 18.3 7 0.781 0.104

SLC Salt Lake City International Airport 17 23 16 18.7 3.8 0.764 0.126

BNA Nashville International Airport 14 21 22 19 4.4 0.767 0.113

SAT San Antonio International Airport 31 1 26 19.3 16.1 0.804 0.236

EWR Newark Liberty International Airport 39 1 19 19.7 19 0.796 0.257

CVG Cincinnati/Northern Kentucky International Airport 13 29 18 20 8.2 0.752 0.117

SNA John Wayne Orange County Airport 21 15 28 21.3 6.5 0.798 0.172

YWG Winnipeg International Airport 19 16 35 23.3 10.2 0.794 0.149

DEN Denver International Airport 29 27 15 23.7 7.6 0.729 0.156

PHX Phoenix Sky Harbor International Airport 27 31 14 24 8.9 0.728 0.152

PDX Portland International Airport 18 32 23 24.3 7.1 0.738 0.125

IAH Houston-Bush Intercontinental Airport 22 40 12 24.7 14.2 0.698 0.163

IND Indianapolis International Airport 26 28 27 27 1 0.728 0.139

SEA Seattle-Tacoma International Airport 24 38 20 27.3 9.5 0.698 0.158

JAX Jacksonville International Airport 25 25 34 28 5.2 0.733 0.132

FLL Fort Lauderdale Hollywood International Airport 34 24 31 29.7 5.1 0.717 0.17

IAD Washington Dulles International Airport 32 33 32 32.3 0.6 0.704 0.163

YUL Montréal-Pierre Elliott Trudeau International Airport 33 34 33 33.3 0.6 0.696 0.16

PBI Palm Beach International Airport 37 20 44 33.7 12.3 0.717 0.171

YEG Edmonton International Airport 30 30 43 34.3 7.5 0.704 0.134

DTW Detroit Metropolitan Wayne County Airport 35 42 30 35.7 6 0.665 0.177

YOW Ottawa International Airport 28 41 45 38 8.9 0.673 0.135

BOS Boston Logan International Airport 42 36 38 38.7 3.1 0.653 0.186

DCA Ronald Reagan Washington National Airport 36 45 36 39 5.2 0.639 0.184

SAN San Diego International Airport 40 37 40 39 1.7 0.655 0.171

JFK New York-John F. Kennedy International Airport 56 17 49 40.7 20.8 0.675 0.269

ORD Chicago O’Hare International Airport 43 52 29 41.3 11.6 0.615 0.217

HNL Honolulu International Airport 38 48 39 41.7 5.5 0.628 0.186

DFW Dallas Fort Worth International Airport 49 44 37 43.3 6 0.622 0.208

OAK Oakland International Airport 46 35 50 43.7 7.8 0.639 0.187

MDW Chicago Midway Airport 48 39 48 45 5.2 0.628 0.188

CLE Cleveland-Hopkins International Airport 41 49 47 45.7 4.2 0.612 0.186

SFO San Francisco International Airport 51 47 41 46.3 5 0.599 0.211

MCI Kansas City International Airport 47 43 51 47 4 0.614 0.183

YHZ Halifax International Airport 44 46 56 48.7 6.4 0.592 0.163

LAX Los Angeles International Airport 55 50 42 49 6.6 0.579 0.23

AUS Austin Bergstrom Airport 45 51 52 49.3 3.8 0.589 0.185

(continued)
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Variables Beyond Airports’ Managerial Control

Congestion Delay. Many of the sampled airports suffer from runway and terminal congestion. 
Pathomsiri et al. (2008) found that the performance ranking of airports would be distorted in favor 
of congested airports because they have higher utilization of all inputs, while delayed flights are 
costly to airlines and passengers. In order to control the former effect, the study incorporates the 
percentage of non-weather delays as an indicator for congestion delay. 

Airport Output Scale. Airports handling more outputs are expected to achieve higher operating 
efficiency, because the continuous flow of outputs helps airports to better utilize their employees 
and other inputs.

Average Aircraft Size. Large aircrafts carry more passengers and cargo at one time, which requires 
a larger number of operators and other facilities to provide land services. Thus, airports have to 
provide sufficient landside capacity for “peak” hours; however, this leads to a lower utilization and 
productivity in “off-peak” hours. On the other hand, airports that mostly handle large aircraft tend 
to have higher utilization of airside facilities.

Percentage of International Traffic. International traffic requires more airport services than 
domestic traffic. On the other hand, airports collect more revenues from international passengers. 
As a result, the impact of international traffic on airport efficiency depends on the counter-balancing 
effects of these two factors.

Percentage of Air Cargo. Providing cargo service may have a mixed impact on airport efficiency. 
While costs are lower to serve cargo traffic, airports may also lose a portion of non-aeronautical 
revenues that come with passenger traffic. Since the output index used to calculate gross productivity 

Table 4:  Spearman’s Rank Order Correlation Coefficients Among Airport Gross 
	  Efficiency Estimates
  All Sample Top 15 airports Mid-ranked airports Bottom 15 airports
  VFP DEA VFP DEA VFP DEA VFP DEA
DEA 0.8338** 1 0.5145** 1 0.4154** 1 0.725** 1
SFA 0.9116** 0.8113** 0.8107** 0.3615 0.6727** 0.2913 0.7071** 0.6**

**correlation is statistically significantly different from zero at the 5% level, two-sided.
*correlation is statistically significantly different from zero at the 10% level, two-sided.

Table 3 continued

Airport 
Code Airport Name VFP DEA SFA

Mean 
Ranking

Std. Dev. 
(Ranking)

Mean 
Efficiency 

Score
Std. Dev. 
(Score)

PHL Philadelphia International Airport 50 60 46 52 7.2 0.561 0.231

PIT Pittsburgh International Airport 53 54 54 53.7 0.6 0.545 0.204

STL St. Louis-Lambert International Airport 52 56 53 53.7 2.1 0.541 0.217

SMF Sacramento International Airport 54 53 55 54 1 0.548 0.203

ONT Ontario International Airport 57 58 58 57.7 0.6 0.509 0.209

ALB Albany International Airport 58 55 61 58 3 0.506 0.188

SJC Norman Y. Mineta San José International Airport 59 57 59 58.3 1.2 0.508 0.208

BWI Baltimore Washington International Airport 60 59 57 58.7 1.5 0.51 0.223

MIA Miami International Aiport 62 61 60 61 1 0.446 0.244

MSY Louis Armstrong New Orleans International Airport 61 62 62 61.7 0.6 0.427 0.208
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does not include cargo as a separate output, the study incorporates the percentage of cargo as a 
variable in the regression models in order to control for the effect of cargo on airport efficiency.

Percentage of Connecting Passengers. Hub airports usually have a significant number of 
connecting passengers. Connecting passengers require less service than do passengers on direct 
flights. Therefore, airports with a high proportion of connecting passengers are expected to have 
high productivity.

Hub Carrier Market Share. The dominance of a hub carrier at an airport may allow better 
coordination and cooperation between the carrier and the airport. Therefore, airports that are 
dominated by a hub carrier are expected to have higher efficiencies than airports with a large number 
of competing airlines.

Variable Within Airport’s Managerial Control

Percentage of Non-Aeronautical Revenue. This indicator is used to present the business strategy 
of an airport. Commercial activities expand airport revenue; however, they also require additional 
resources. Therefore, it is necessary to examine the impact of non-aeronautical activities on airport 
efficiency. 

Table 5 reports the second stage regression results for the three models.17 All three results show 
consistently that airport congestion delay, percentage of cargo services, or hub carrier’s market share 
does not have statistically significant impacts on an airport’s operating efficiency. 

Table 5:  Regression Results on the Gross Efficiency Scores
VFP OLS (log-log)          DEA Tobit (log-log) SFA Tobit (log-log)

  Coefficient t-Stat Coefficient t-Stat Coefficient t-Stat

Congestion Delay 0.012 0.07 0.128 0.5 -0.005 -0.14
Output Size 0.231** 3.46 0.207** 2.26 0.086** 5.94
Ave. Aircraft Size -0.39** -3.23 -0.197 -1.18 -0.080** -3.08
% International -0.021* -1.71 -0.037** -2.08 -0.006** -2.22
% Cargo -0.037 -1.19 -0.01 -0.23 -0.006 -0.93
% Non-Aeronautical 
Revenue 0.572** 4.22 0.615** 3.23 0.114** 3.91

% Connecting Passenger 0.027** 2.01 0.033* 1.72 0.005* 1.68
% Hub Carrier 0.003 0.05 -0.026 -0.29 -0.009 -0.65
Intercept 1.283 2.07 0.972 1.12 0.189 1.41
R2 0.55 - -
Log-likelihood value -     -19.15     87.12  

*The coefficient is significant at the 90% level.
**The coefficient is significant at the 95% level. 

The output size variable has significant positive coefficients in all of the three regressions (VFA, 
DEA, and SFA).  This means that the larger the output size, the higher the operating efficiency the 
airport is expected to achieve. This evidence does not translate into scale economies because the 
dependent variable in these regressions is only operating efficiency, not total efficiency.  Given the 
quasi-fixed nature of airport capacity in the short run, this evidence may be interpreted as economies 
of utilization of the given capacity.
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Average aircraft size has a statistically significant negative coefficient in the VFP and SFA 
regressions while not being significant in the DEA regression. This negative coefficient is surprising, 
and could be the result of more inputs required to service large aircraft.18 

The statistically significant negative coefficient for the percentage of international (passenger) 
variables in all of the three models indicates that international traffic requires more resources to deal 
with customs, immigrations, and more stringent security. 

The significant positive coefficient for the percentage of connecting passengers indicates that 
airports with high proportions of connecting passengers (hub airports) are expected to have high 
operating efficiency. This is probably because a connecting passenger at an airport is counted twice 
(deplanement and enplanement), and thus, requires fewer airport resources (not requiring check-in 
facilities, baggage areas, etc.).

As described above, the percentage of non-aeronautical revenue in total airport revenue is the 
only variable that can be largely chosen (controllable) by airport managers among the variables 
included in the second stage regression analysis. Consistent with many previous studies, including 
Oum et al. (2006, 2008) and Tovar and Martin-Cejas (2009), the percentage of non-aeronautical 
revenue has significant positive effects on operating efficiency of airports in all three regressions. 
Thus, an airport that derives a high percentage of its total revenue from non-aeronautical activities is 
expected to fare well in all three measures of operating efficiency.19 This result implies that making 
more effort to increase non-aeronautical revenue beyond the current level of average efforts being 
expended by the North American airports would increase an airport’s operating efficiency, and thus, 
should be encouraged. 

Managerial Efficiency Results Based on the Alternative Methods

After removing the effects of airport characteristics beyond managerial control, residual (managerial) 
efficiencies20 are estimated and airports are ranked by their managerial efficiencies.  Similar to the 
gross efficiency estimates, the sample is divided into three groups: the top 15 airports, the bottom 
15 airports, and the mid-ranked airports. The comparative residual efficiency rankings between the 
three alternative methodologies are reported in Table 6. To provide a clear picture of the residual 
efficiency rankings, Figures 1, 2, and 3 plot the results of the three alternative methods for the top 
15, the bottom 15, and the mid-ranked airports.  For the top 15 airports, except for BNA (Nashville), 
airport rankings are largely consistent across the three alternative methods. Most airports in this 
group have similar efficiency rankings regardless of the method of measurement used.  The rankings 
for the bottom 15 airports are also similar across the three methods except for BOS (Boston) and 
PHL (Philadelphia).  In contrast, significant variations exist in the rankings of mid-ranked airports, 
notably SEA (Seattle), EWR (Newark), and JFK (New York).  Based on the average residual 
efficiency scores, Atlanta (ATL), Raleigh-Durham (RDU), Charlotte (CLT), Minneapolis-St. Paul 
(MSP), and Reno (RNO) are the top five most efficient airports in the sample of U.S. airports 
studied.

In general, the three sets of airport managerial/operational efficiencies are highly correlated 
with each other as indicated in the Spearman’s rank order correlation coefficient reported in Table 
7. Similar to the results in gross efficiency estimates, the ranking results between VFP and SFA are 
more consistent with each other.  Because of many corner solutions in DEA measurement and the 
consequent existence of a large number of efficient DMUs (airports in this case), the managerial 
efficiency rankings based on DEA method are considerably different from those of the other two 
methods.  The correlation between VFP and DEA for the mid-ranked airports is not even statistically 
significant. 
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Airport VFP DEA SFA
Mean 

Ranking
St. Dev. 

(Ranking)

Mean 
Efficiency  

Score
Std Dev 
(Score)

Top  15 Ranked Airports

ATL 3 1 3 2.3 1.2 1.146 0.109
RDU 2 5 4 3.7 1.5 1.101 0.122
RNO 9 2 1 4.0 4.4 1.030 0.134
CLT 1 7 6 4.7 3.2 1.081 0.819
PBI 7 3 5 5.0 2.0 1.029 0.109
BNA 5 12 2 6.3 5.1 1.013 0.102
MSP 4 9 7 6.7 2.5 1.035 0.853
JAX 6 13 8 9.0 3.6 0.966 2.082
LGA 11 4 13 9.3 4.7 0.973 0.106
SAT 12 10 9 10.3 1.5 0.928 0.111
TPA 8 14 10 10.7 3.1 0.945 0.111
SNA 10 16 11 12.3 3.2 0.905 1.701
MCO 13 8 18 13.0 5.0 0.927 0.117
MKE 15 17 12 14.7 2.5 0.871 0.118
FLL 16 15 15 15.3 0.6 0.880 2.531

Middle Ranked Airports

PDX 14 21 14 16.3 4.0 0.853 0.124
SAN 19 24 16 19.7 4.0 0.819 0.131
SLC 22 20 20 20.7 1.2 0.814 0.130
OAK 25 19 19 21.0 3.5 0.820 0.137
RIC 18 25 21 21.3 3.5 0.821 0.142
ABQ 23 18 23 21.3 2.9 0.828 3.377
SEA 17 35 17 23.0 10.4 0.802 2.565
HNL 20 27 22 23.0 3.6 0.811 0.151
EWR 38 6 28 24.0 16.4 0.868 0.150
IAD 27 22 26 25.0 2.6 0.794 0.152
LAS 21 30 25 25.3 4.5 0.791 0.152

MEM 30 23 29 27.3 3.8 0.781 0.154
MDW 32 28 27 29.0 2.6 0.765 0.157
DCA 26 38 24 29.3 7.6 0.751 0.161
IAH 24 37 30 30.3 6.5 0.760 0.162
JFK 45 11 36 30.7 17.6 0.794 0.164
IND 33 29 31 31.0 2.0 0.756 0.165
PHX 29 33 33 31.7 2.3 0.753 0.166
SMF 31 26 38 31.7 6.0 0.765 0.167
AUS 28 40 32 33.3 6.1 0.735 0.171

Table 6:  Comparative Airport Rankings by Residual (Managerial) Efficiency Scores 

(continued)
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Table 6 continued

Airport VFP DEA SFA
Mean 

Ranking
St. Dev. 

(Ranking)

Mean 
Efficiency  

Score
Std Dev 
(Score)

Middle Ranked Airports (continued)

SDF 34 31 37 34.0 3.0 0.743 5.457
DEN 37 34 39 36.7 2.5 0.729 0.173
DTW 36 41 35 37.3 3.2 0.712 0.178
SFO 40 39 34 37.7 3.2 0.709 0.178
MCI 39 36 41 38.7 2.5 0.715 7.506

Bottom 15 Ranked Airports

BOS 41 32 43 38.7 5.9 0.721 0.181
CVG 35 43 40 39.3 4.0 0.702 0.187
CLE 43 44 42 43.0 1.0 0.678 0.188
SJC 42 45 45 44.0 1.7 0.671 0.183
ALB 44 42 50 45.3 4.2 0.669 0.185
PHL 46 54 44 48.0 5.3 0.618 3.856
DFW 53 46 47 48.7 3.8 0.630 0.196
STL 49 52 46 49.0 3.0 0.614 0.200
ONT 48 48 51 49.0 1.7 0.623 0.200
LAX 54 47 48 49.7 3.8 0.617 0.203
ORD 50 51 49 50.0 1.0 0.612 0.206
BWI 51 49 53 51.0 2.0 0.616 0.209
PIT 52 50 52 51.3 1.2 0.609 5.103

MSY 47 53 54 51.3 3. 0.594 3.070
MIA 55 55 55 55.0 0.0 0.506 0.625
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Figure 1: Residual Ranking Comparison of Top 15 Airports
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Figure 2: Residual Ranking Comparison of Bottom 15 Airports
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Table 7:  Spearman’s Rank Order Correlation Coefficients Among Residual Efficiency 		
	  Estimates
  All sample Top 15 airports Mid-ranked airports Bottom 15 airports

  VFP DEA VFP DEA VFP DEA VFP DEA

DEA 0.8468** 1 0.4643* 1 0.18 1 0.5821** 1

SFA 0.969** 0.8899** 0.7393** 0.55** 0.8577** 0.4154** 0.675** 0.5571**

*correlation is statistically significantly different from zero at the 10% level, two-sided.
**correlation is statistically significantly different from zero at the 5% level, two-sided.

CONCLUSION AND FURTHER RESEARCH NEED

This study reviews and compares airport operating efficiency indices measured by VFP (Variable 
Factor Productivity), DEA (Data Envelopment Analysis), and SFA (Stochastic (Production Frontier 
Analysis) methods, which have been used widely in past studies.  Based on a sample of 62 major 
Canadian and US airports, this paper has compared the “gross” and managerial (“residual”) operating 
efficiency scores and airport rankings estimated by each of these three alternative methods. 

Both the gross efficiency and residual efficiency estimates by these three alternative methods 
are highly correlated. The airport efficiency rankings for both the top 15 and the bottom 15 airports 
are largely consistent across these three alternative methods, while significant differences exist in 
the mid-ranked airports.  However, because of many corner solutions in DEA measurement and the 
consequent existence of a large number of efficient airports, the efficiency rankings based on the 
DEA method are considerably more different from those of the other two methods. 

Given that the DEA application to the data has identified 12 efficient airports, each with gross 
DEA score of one (Table 3), it begs an important question whether or not there are truly significant 
differences in operating efficiencies among the top 10-15 airports, and if there are, how deep are 
the differences.  This begs for further research of the top 10-15 airports (especially those 12 airports 
with gross DEA value of 1.0) based on micro-data. 

Based on the average residual efficiency scores, Atlanta (ATL), Raleigh-Durham (RDU), 
Charlotte (CLT), Minneapolis-St. Paul (MSP), and Reno (RNO) show up as the top five most 
efficient airports in the U.S.
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Figure 3: Residual Ranking Comparison of Mid-Ranked Airports
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Endnotes

1.	 In the short run, airlines wishing to serve certain markets do not have much choice of airports, 
but in the end, airlines will consider efficient versus inefficient airports when they restructure 
their route networks.

2.	 The direct and/or indirect regulators such as aviation departments of cities and the FAA have 
various means to exert pressure on inefficient airports. Therefore, benchmarking of efficiency 
among peer airports provides at least indirect pressure on airport management to pay attention 
on efficiency.  

3.	 To save space, this paper will not review the literature on airport productivity and efficiency in 
detail, please refer to Liebert and Niemeier (2010).

4.	 One should note that by excluding capital inputs and costs in the short-to-medium term 
efficiency analysis, this study aims to compare operating efficiencies that could be affected by 
airport managers in the short to medium term.

5.	 Since the CRS assumption may be violated for the airport industry, this problem is dealt 
with by including an output scale variable in the second stage regression analysis, which is 
discussed later.

6.	 Battese and Coelli (1992) define the concept of technical efficiency of a given firm as the ratio 
of its mean production to the corresponding production if the firm utilized its levels of inputs 
most efficiently.

7.	 This additional constraint represents a convexity constraint that ensures that an inefficient firm 
is only benchmarked against firms of a similar size.

8.	 On the other hand, one could argue that airport managers have more control over non-
aeronautical activity volumes such as parking revenues, revenues from shops and restaurants, 
rental spaces, hotels, etc. This may be true only in the long run when capital investments on 
buildings and spaces can be adjusted, not necessarily so in the short to medium term for which 
the operating efficiency measures are based. Related to non-aeronautical revenue output, 
recent studies including Zhang et al. (2010), have discovered the increasing importance of 
external effects of increased aeronautical outputs airlines bring to an airport on the amount 
of non-aeronautical revenues the airport can generate. This implies that the aviation activity 
volumes are an increasing cause of the non-aeronautical revenue outputs.

9.	 The primary reason for using the SFA-production function instead of a cost function is the 
seemingly direct comparability of the three methodologies. Variable Factor Productivity 
(VFP) index is based on essentially the ratio of the output index and input index, and the DEA 
index directly relates outputs to inputs. Therefore, using a production function, which relates 
the output index directly to input quantities, serves the purpose of the study better. This also 
reduces our computational work. 

10.	 The constant RTS allows cost shares to be used as aggregating weights for the inputs. 
Although the use of revenue shares of outputs as aggregating weights for outputs needs further 
assumptions, since the paper uses a single aggregate output index in all of the three methods, 
they are even on this dimension.
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11.	 As pointed out by a referee, it is possible to detect outliers using methodologies such as 
Mahalanobis D2. There are two issues to confront.  First of all, within the two-stage framework 
of analysis, without seeing results of the second stage analysis, it probably is hard to know what 
observations will be the outliers even if such methodologies as Mahalanobis D2 are employed.  
Another issue is that it is expensive to researchers to lose several outlier airports’ data points 
even if we are able to identify true outliers since it is expensive and time consuming to collect 
even one airport’s data.

12.	 As a referee pointed out to us, airport revenue can be influenced by monopoly power. For 
example, an airport charging higher rates for parking may be influenced by the unavailability 
of close off-site parking options. Therefore, the airports with monopoly power may appear to 
be more productive than in reality.

13.	 The main reason why snow removal costs are removed from the total soft cost rather than 
including it in the second stage regression analysis is that for many airports, snow removal 
costs are zero. As such, this poses a problem in logarithmic transformation of the data unless 
some sort of transformation function such as Box-Cox form is used, which tends to complicate 
the analysis unnecessarily.

14.	 The Purchasing Power Parity (PPP) uses the long-term equilibrium exchange rate of two 
currencies to equalize their purchasing power. PPP equalizes the purchasing power of different 
currencies in their home countries for a given basket of goods.

15.	 The Cost of Living Index (COLI) is a composition index to measure the relative price level 
for consumer goods and services in areas for a mid-management standard of living. The 
overall index (100%) is composed of grocery items (13%), housing (29%), utilities (10%), 
transportation (10%), health care (4%), and miscellaneous goods and services (35%).

16.	 In the absence of COLI, city-based CPI is used to adjust Canadian airports. The COLI and CPI 
indices are linked with the US-Canada PPP exchange rate in 2006: 1US$=1.245CA$.

17.	 A variance inflation factor (VIF) diagnostic test was conducted after the OLS regression in 
order to see if there are significant multicollinearity problems among our explanatory variables. 
The test reveals there is no concern of multicollinearity problem. Output size and percentage 
of International Traffic have the highest VIF value of 2.18 and 2.04, respectively. As a rule of 
thumb, VIF values of considerably less than 10 do not raise concern in multicollinearity.

18.	 This negative coefficient for “aircraft size” in the second stage regression on the Canada/US 
airport data has been a bother for the last 10 years of the ATRS benchmarking work, especially 
because similar second stage regressions on European and Asian airport data show positive 
signs. However, this has been a consistent result over the last 10 years or so (even if each 
year’s cross sectional data or a panel data of cross-section and time-series data are used). Some 
senior airport managers argue that the coefficient could be positive or negative. The authors 
would welcome further comments and/or research results on this issue.

19.	 A referee posed an interesting question on non-aeronautical revenue in the context of this 
paper’s model, which excludes capital input (due to measurement problems) and focuses on 
operating efficiency measurement. The referee’s point is that airport (a) with a lot of parking 
would be favored in our study as compared with airport (b) without any parking lots. While 
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this is a good counter example, the results on non-aeronautical revenue show that airport (a) 
should, in fact, be rated higher than airport (b). Airport (b) is not making a reasonable effort to 
increase non-aeronautical revenue, a part of which is parking revenue.

20.	 Since non-aeronautical revenue is controlled by airport managers, its effect is not deducted 
from “gross” scores when the residual efficiency scores are computed using the second stage 
regression results.
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