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Correlation	 analysis	 was	 performed	 to	 investigate	 the	 effects	 of	 drive	 cycle	 characteristics	 on	
distance-specific	emissions	(g/mile)	and	fuel	economy	(mpg)	and	consequently	determine	the	most	
influential	 cycle	metrics	 for	modeling.	A	 detailed	 analysis	 of	 linear	 and	non-linear	 correlations	
was	performed	among	cycle	metrics	to	avoid	collinearity	and	reduce	the	number	of	variables.	The	
order	of	importance	of	the	selected	cycle	metrics	was	determined.	Results	show	that	average	speed	
with	idle,	number	of	stops	per	mile,	percentage	idle,	and	kinetic	intensity	were	the	most	important	
cycle	metrics	affecting	emissions	and	fuel	economy.	Preliminary	regression	analysis	reinforced	their	
importance	for	emissions	modeling	purposes.	

INTRODUCTION

West Virginia University (WVU) has been engaged in developing an Integrated Bus Information 
System (IBIS) (Wayne et al. 2011) for the Federal Transit Administration (FTA). The intent of 
IBIS is to provide information on emissions and fuel economy for available bus technologies for 
bus procurement activities. IBIS includes a database of emissions test results of transit buses, a 
bus fleet emissions model, and a life cycle cost model. Compared with existing major emission 
models, such as the Mobile Source Emission Factor Model (MOBILE6) (U.S EPA 2003), the Motor 
Vehicle Emission Simulator (MOVES) developed by the U.S. Environmental Protection Agency 
(U.S. EPA 2010), IBIS provides transit agencies a simple tool to satisfactorily estimate emissions for 
evaluating the impact of new vehicle procurement on the overall fleet emissions profile. Similarly, 
IBIS is simpler compared with the EMission FACtors (EMFAC) model developed by the California 
Air Resources Board (CARB 2006) 

The purpose of this study is to investigate the drive effects of cycle characteristics, which are 
metrics based on second-by-second vehicle speed data and distance-specific emissions in order to 
identify the most important parameters that should be included in a predictive emissions model. 
These emissions are carbon monoxide (CO), carbon dioxide (CO2), oxides of nitrogen (NOx), 
hydrocarbons (HC), and particulate matter (PM). This study is unique because WVU collected 
emissions data from 12 predefined vehicle speeds on the same vehicle using a chassis dynamometer. 
These speeds are the chassis dynamometer test cycles used in this study and are different from test 
or duty cycles in which a driver operates a bus on a chassis dynamometer to perform emissions 
testing. Data interpolation enabled the authors to investigate the statistical relationships between 
cycle metrics and their impacts on emissions and fuel economy (FE). In previous studies, data from 
only a limited number of test cycles on the same vehicle (typically five or less) were available, and 
this limited the effectiveness of their statistical analyses. This study identifies the most influential 
cycle metrics for inclusion in the IBIS emissions model as well as other emissions and fuel economy 
modeling efforts. 

Driving characteristics are among the main factors affecting emissions and fuel economy of 
transit buses. Other important factors include vehicle parameters, fuel types, engine parameters, 
road conditions, and ambient conditions (Clark et al. 2002). To mimic actual driving conditions of 
on-road vehicles, chassis dynamometer cycles have been developed (Gautam et al. 2002, Nine et 
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al. 1999). Previous studies, using emissions data from multiple test cycles, showed that distance-
specific emissions depended strongly upon the characteristics of duty cycles and found that average 
speed was one of the most important cycle metrics (Graboski et al. 1998, Nine et al. 2000, Clark et 
al. 1997, Vora et al. 2004). The MOBILE6 and EMFAC models estimate emissions as a function of 
average speed. Specifically, these macroscopic models calculate emissions based on average speed 
and vehicle miles traveled. At different average speeds, the study used speed correction factors 
to estimate emissions. These speed correction factors are determined by fitting emissions values 
with average speed. Previous studies showed the insufficiency of using average speed to evaluate 
emissions since average speed alone could not comprehensively reflect cycle characteristics (Ahn et 
al. 2002, Rakha and Ding 2003). Other metrics besides average speed, such as percentage idle and 
average acceleration, have been investigated (Andre and Pronello 1997, Wayne et al. 2007, Clark 
et al. 2007, Khan et al. 2007, Rakha and Ding 2003). However, these studies did not discuss all 
important duty cycle metrics.

Thirteen cycle metrics were considered in this study. They are average speed with idle (or 
average speed) and without idle, number of stops per mile (stops/mile), percentage idle, standard 
deviation of speed with and without idle, average and maximum acceleration, average and maximum 
deceleration, aerodynamic speed, which is the difference between average cubed speed and average 
speed, kinetic intensity, and characteristic acceleration (O’Keefe et al. 2007). The latter, characteristic 
acceleration, is specific kinetic energy per unit mass and distance required accelerating a vehicle 
over a duty cycle after ignoring road grade effects. This acceleration is equal to the actual vehicle 
acceleration if the vehicle increases its speed at a constant rate. The square of aerodynamic speed 
directly reflects the effects of aerodynamics on fuel economy and it is equal to the actual vehicle 
speed from driving at a constant speed. Kinetic intensity relates to fuel savings of hybrid vehicles 
over their conventional counterparts tested on the same cycles, and it gives an indication of whether 
hybridization will result in fuel savings for a particular duty cycle. Kinetic intensity is the ratio of 
characteristic acceleration to the square of aerodynamic speed. A cycle with a larger characteristic 
acceleration and a smaller aerodynamic speed that results in higher kinetic intensity is better for 
hybridization (O’Keefe et al. 2007). 

These 13 cycle metrics were analyzed by correlation to reduce the number of cycle metrics and 
remove those that are collinear. In selecting the metrics to use in the IBIS emissions model, the study 
considered the abilities of transit agencies to calculate their values using data available to them. In 
some cases, some metrics were retained or eliminated based on this additional criterion. To account 
for non-linear relationships, this study uses a non-parametric correlation analysis to determine the 
order of importance of the chosen metrics in predicting emissions and fuel economy. Preliminary 
regression analysis was performed to demonstrate and reinforce the significant effect of the selected 
cycle metrics for modeling. The JMP® statistical software (SAS Institute 2009, Freund et al. 2003) 
and MATLAB® were used for the data analysis, as well as correlation and regression analysis in 
this study.

TEST VEHICLE INFORMATION

A model year (MY) 2000 Orion diesel transit bus was tested at the Washington Metropolitan Area 
Transit Authority (WMATA) facility to compare the effects of different drive cycles on emissions. 
The bus had a gross vehicle weight rating (GVWR) of 42,540 pounds and a curb weight (the weight 
of a bus without passengers but with all of standard equipment) of 28,800 lbs. The weight as tested 
was 33,300 pounds, representing half-seated passenger load. The test bus was powered by a 2000 
MY, 8.5-liter, 4-cylinder, and 275 horsepower Detroit Diesel S50 engine with a diesel oxidation 
catalyst (DOC). The fuel used by the bus was type one ultra-low sulfur diesel (ULSD1). The vehicle 
was equipped with a four-speed Voith D863 automatic transmission. The vehicle configuration 
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remained the same for all test cycles. The bus was tested over 12 test cycles, which are described in 
the following section.

TEST CYCLES

Multiple chassis dynamometer test cycles (Clark et al. 2002, DieselNet 2007, SAE International 
1982, SAE International 2002, Schiavone et al. 2002, Thompson et al. 1990, Wayne et al. 2002) 
were used since emissions and fuel economy are related to duty cycles. Since it is not practical 
to develop test cycles for all types of vehicles and driving behaviors, it is necessary to develop 
a limited but representative number of test cycles to mimic driving activities of realistic transit 
bus operation. Specific test cycles were generated to represent real-world operation in specific 
applications or localities. For example, the New York Bus cycle (NYBus) (Clark et al. 2002) was 
developed to represent the driving conditions of heavy-duty vehicles in New York City. The test 
vehicle was operated through 12 chassis dynamometer cycles for this study, and multiple repeat runs 
were performed on certain test cycles. In total, 13 cycle metrics were considered in this study. The 
test cycles and their characteristics are summarized in Table 1 and cycle abbreviations are defined 
in Appendix A at the end of this paper.

EXTENDED DATABASE

Since only 12 cycles were available for analysis, an expanded database was desired. Figure 1 shows 
carbon monoxide emissions as a function of cycle average speed ranging from the lowest speed of 
3.57 miles per hour (mph) (NYBus cycle) to the highest speed of 43.72 mph (COMM cycle) (SAE 
International 1982). No test cycles existed between an average speed from 28.63 mph (ETC cycle) 
(DieseltNet 2007) and 43.72 mph (COMM cycle). Interpolation was used to extend the database 
to fill the gaps as mentioned above with the assumption that no extreme cycle characteristics exist 
between adjacent cycle points. Initially, 18 cycle points were interpolated using an equal interval 
of two mph for the average speed. A piecewise cubic hermite interpolating polynomial (pchip) 
(Kahaner et al. 1988) was applied in this study using MATLAB®. The pchip polynomial is one type 
of piecewise cubic polynomials and it can be determined using both values from end-points and 
their derivatives. A comparison with other interpolation methods is provided in Figure 1. Compared 
with linear interpolation, pchip interpolation is smoother and less likely to overshoot. Although 
spline interpolation had smoother results than pchip, it was not considered because it caused more 
oscillation in data interpolation. The same analysis and method were applied to the four other cycle 
metrics. The magnitudes of the intervals were 10% for percentage idle, four stops per mile (stops/
mile), three mph for standard deviation of speed, and one reciprocal of unit mile (mile-1) for kinetic 
intensity. In this way, 44 cycle points were generated to extend the database to 56 cycle points. When 
extended emissions and fuel economy data were plotted against duty cycle metrics, no significant 
deviation from the reference dataset was observed and the interpolated cycle points followed the 
same trend as the reference points.

ROAD LOAD DERIVED CYCLE METRICS

Unlike conventional cycle metrics derived directly from speed-time trace (second-by-second vehicle 
speed data), aerodynamic speed, characteristic acceleration, and kinetic intensity were derived from 
a road load equation (Gillespie 1992, Miller 2004) to relate them to fuel consumption (O’Keefe et 
al. 2007). The general form of the road load equation is:

(1) 
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Where Ftraction is the total traction required for vehicle motion, M is vehicle mass, dv/dt is vehicle 
acceleration, Faero is aerodynamic resistance, Frolling is rolling resistance, and Fgrade is grade resistance 
due to a slope. A detailed derivation and background information are provided in O’Keefe et al. 
(2007) and Simpson (2005). 
 Originally, these three cycle metrics were to be used with fuel consumption to differentiate duty 
cycles as well as fuel savings for hybrid vehicles on a given duty cycle (O’Keefe et al. 2007). Since 
they are derived from a road load equation and are related to energy usage, these cycle metrics are 
hypothesized to have some relationships with emissions and fuel economy. 
 Table 2 presents correlations of the metrics with distance-specific emissions and fuel economy, 
and it shows all three metrics have significant correlations. The negative correlations between 
aerodynamic speed and emissions indicate that emissions increase with decreasing aerodynamic 
speed, while the positive correlation with fuel economy shows that fuel economy increases along 
with increasing aerodynamic speed. However, characteristic acceleration as shown in Table 2 has an 
inverse relationship with the emissions and fuel economy compared with aerodynamic speed, which 
makes sense because larger characteristic acceleration requires more kinetic energy to accelerate, 
indicating higher fuel consumption and increased emissions. Kinetic intensity shows the same but 
stronger correlation trend as characteristic acceleration (except with fuel economy) compared with 
the other two metrics.

Table 1: Statistics of 12 Target Dynamometer Test Cycles

Cycle
Duration 
(seconds)

Distance 
Traveled 
(miles)

Average 
Speed 

with Idle    
(mph)

Average 
Speed 

without 
Idle 

(mph)
Percentage 

Idle

Number 
of Stops 
per Mile

Standard 
Deviation of 
Speed with 
Idle (mph)

Standard 
Deviation 
of Speed 

without Idle 
(mph)

ART 291.6 2.00 24.71 29.55 16.39% 2.00 15.64 12.19
BEELINE 1724 6.79 14.17 19.29 26.54% 3.54 14.74 14.04
BRAUN 1750 6.73 13.85 18.48 25.04% 4.31 11.35 9.30

CBD 586 2.01 12.36 15.71 21.35% 6.96 8.46 6.19
COMM 329.6 4.00 43.72 49.71 12.04% 0.25 19.46 11.46
ETC_12 1200 9.54 28.63 29.93 4.32% 0.42 15.84 14.95

MAN 1098.7 2.07 6.77 10.66 36.52% 9.68 7.33 6.56
NYBUS 620 0.61 3.57 10.69 66.60% 17.89 6.41 6.86

NY-COMP 1029 2.51 8.77 12.85 31.76% 7.58 9.44 8.84
OCTA 1950 6.54 12.08 15.52 22.17% 4.74 10.33 9.14
UDDS 1060 5.54 18.83 28.04 32.84% 2.89 19.82 18.07

WMATA 1839 4.25 8.32 13.47 38.27% 6.12 10.31 10.14

Cycle

Average 
Acceleration 

(ft/sec2)

Maximum 
Acceleration 

(ft/sec2)

Average 
Deceleration 

(ft/sec2)

Maximum 
Deceleration 

(ft/sec2)
Aerodynamic 
Speed (mph)

Characteristic 
Acceleration 

(ft/sec2)

Kinetic 
Intensity 
(mile-1)

ART 2.02 3.67 6.45 7.33 35.58 0.65 1.26
BEELINE 2.06 7.33 2.58 10.27 32.03 0.88 2.10
BRAUN 2.08 8.07 2.80 11.73 24.17 0.72 3.02

CBD 2.87 3.67 6.38 7.33 18.55 0.57 4.04
COMM 1.37 3.67 6.67 18.33 52.84 0.15 0.14
ETC_12 1.14 13.20 1.26 8.07 39.16 0.31 0.50

MAN 2.04 7.33 2.59 8.80 15.78 0.94 9.24
NYBUS 4.09 9.53 2.39 7.33 16.64 1.25 11.07

NY-COMP 1.72 13.93 1.94 13.20 20.69 0.77 4.42
OCTA 1.88 5.87 2.61 8.07 22.10 0.72 3.60
UDDS 1.78 8.80 1.99 8.07 42.49 0.50 0.68

WMATA 1.74 4.40 2.10 6.60 23.22 0.77 3.51
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Figure 1: Reference Cycles and Comparison of Interpolation Curves Based 
  on Average Speed

Table 2: Correlations of Road Load Derived Cycle Metrics With Emissions and Fuel 
  Economy 

CO2 CO HC NOx PM FuelEco

AeroV -0.77 -0.70 -0.80 -0.66 -0.72 0.85
CharAcc 0.89 0.78 0.79 0.82 0.81 -0.94
KInt 0.94 0.89 0.93 0.87 0.90 -0.84

Note: All correlations are significant at the 0.0001 level (p<0.0001).
 AeroV: Aerodynamic speed  CO: Carbon monoxide  NOx: Oxides of nitrogen
 CharAcc: Characteristic acceleration CO2: Carbon dioxide  PM: Particulate matter
 KInt: Kinetic intensity  HC: Hydrocarbon  FuelEco: Fuel economy
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SELECTION OF THE IMPORTANT CYCLE METRICS

A detailed correlation analysis was performed to identify the duty cycle metrics having the most 
significant correlations with emissions and fuel economy and to detect highly correlated redundant 
metrics.

Correlation Analysis Among Cycle Metrics

A Pearson correlation matrix was applied to detect bivariate collinearity among the cycle metrics. 
The analysis shows that several variables highly correlate with each other. Although the existence of 
collinearity is not a violation of the assumptions of regression analysis, it shows that several cycle 
metrics have similar impacts on emissions and fuel economy and they should be removed from the 
analysis. Collinearity also makes it difficult to interpret the partial regression coefficients, which 
measure the effect of the corresponding cycle metrics while holding constant all other metrics. 
When collinearity exists, the affected coefficients estimate some effects for the response but not 
really from the corresponding metrics. Table 3 shows full correlation coefficients for the 13 duty 
cycle metrics. Statistically significant and strong correlations were found among some variables 
including the following:

a. Average speed with idle versus average speed without idle, aerodynamic speed, and 
characteristic acceleration;

b. Average speed without idle versus standard deviation of vehicle speed with idle, and 
aerodynamic speed;

c. Stops per mile versus percentage idle and kinetic intensity;
d. The standard deviations of vehicle speed with idle versus aerodynamic speed and standard 

deviation of vehicle speed without idle. 
 In total, nine pairs of metrics have correlations larger than 0.90 in absolute terms, which are 
statistically significant at probability levels of less than 0.0001. These pairs are highlighted with 
bold typeface letters in the lower triangular matrix in Table 3. Consistent with previous studies by 
Clark et al. (2002), Clark and Gajendran (2003), and Boriboonsomsin and Uddin (2006) that have 
concluded that average speed (with idle) is an important factor due to its relationship with other 
cycle properties, it is found that average speed with idle correlates with most cycle metrics. As a 
result, average speed without idle, aerodynamic speed, and characteristic acceleration were removed 
from the analysis. Average speed with idle was retained rather than average speed without idle 
because the former is easier for a transit agency to calculate. Similarly, the standard deviation of 
vehicle speed with idle has strong relationships with the standard deviation of vehicle speed without 
idle and aerodynamic speed, and it was retained, while the standard deviation of vehicle speed 
without idle was removed.
 Aerodynamic speed correlates with both average speed and the standard deviation of vehicle 
speed, indicating that it may reflect the statistical features of vehicle speed such as the mean and 
dispersion. However, aerodynamic speed was removed, because average speed and standard 
deviation of vehicle speed were retained. Additionally, O’Keefe et al. (2007) showed that kinetic 
intensity is related to both aerodynamic speed and characteristic acceleration. Thus, it is better to 
retain kinetic intensity than aerodynamic speed or characteristic acceleration. 
 Since it reflects the transient nature of driving cycles and it is easily obtained, stops per mile 
were retained, as was the percentage idle because of its effects on emissions (Wayne et al. 2007), 
although both metrics strongly correlate with each other. However, this strong positive correlation 
cannot be well explained. For example, more stops in a trip do not necessarily mean a higher 
percentage of idling. If a short idle duration occurs at each stop, total idle time of that trip can be 
less than that of a trip with a longer idle duration at each stop and fewer total stops during the trip. 
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The strong correlation between kinetic intensity and stops per mile indicates that both metrics reflect 
some features of transient driving behavior. 

Table 3: Correlations of All Cycle Metrics
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AspedWID 1.00
AspedWoID 0.98+ 1.00
PercID -0.83+ -0.76+ 1.00
Stops/Mi -0.83+ -0.82+ 0.90+ 1.00
VstdWID 0.85+ 0.90+ -0.69+ -0.87+ 1.00
VstdWoID 0.63+ 0.67+ -0.54+ -0.76+ 0.91+ 1.00
AveAcc -0.66+ -0.60+ 0.79+ 0.82+ -0.63+ -0.57+ 1.00
MaxAcc -0.08 -0.18 -0.08 0.08 -0.12 0.09 -0.25 1.00
AveDec 0.43+ 0.49+ -0.30* -0.29* 0.31* -0.03 0.05 -0.74+   1.00
MaxDec 0.51+ 0.49+ -0.41** -0.33* 0.28* 0.00 -0.45+  0.16 0.22 1.00
AeroV 0.94+ 0.97+ -0.73+ -0.85+ 0.97+ 0.83+ -0.65+ -0.08 0.34* 0.40** 1.00
CharAcc -0.93+ -0.89+ 0.88+ 0.89+ -0.81+ -0.63+ 0.79+ -0.04 -0.28* -0.47+ -0.87+ 1.00
KInt -0.80+ -0.80+ 0.82+ 0.97+ -0.89+ -0.81+ 0.73+ 0.07 -0.29* -0.30* -0.85+ 0.86+ 1.00

Note:

* Correlation is significant at the 0.05 level
** Correlation is significant at the 0.01 level
+ Correlation is significant at the 0.001 level
AspedWID: Average vehicle speed with idle VstdWoID: Standard deviation of vehicle speed without idle AveDec: Average deceleration
AspedWoID: Average vehicle speed without idle VstdWID: Standard deviation of vehicle speed with idle MaxDec: Maximum deceleration
PercID: Percentage idle     KInt: Kinetic intensity AeroV: Aerodynamic speed
Stops/Mi: Stops per mile MaxAcc: Maximum acceleration CharAcc: Characteristic acceleration  
   AveAcc: Average acceleration

 
 Certain redundant metrics were retained because they could be easily calculated from basic 
route information available to transit agencies. The retention of these cycle metrics results in 
collinearity. However, a potential predictive model does not necessarily have to include all selected 
cycle metrics as explanatory variables. After some collinearity was removed, the total number of 
metrics decreased from 13 to nine.

Further Dimensionality Reduction

It is evident from Table 3 that the four-cycle metrics, including average acceleration (AveAcc), 
maximum acceleration (MaxAcc), average deceleration (AveDec), and maximum deceleration 
(MaxDec), have weak correlations with the other metrics. To be useful for emissions modeling, 
they must correlate with emissions and fuel economy. Table 4 shows the correlations of these four 
metrics with emissions and fuel economy. Average acceleration shows moderate and significant 
correlations while maximum acceleration, average deceleration, and maximum deceleration do not 
correlate well with the emissions and fuel economy.
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Table 4: Correlations of Four Cycle Metrics vs. Emissions and Fuel Economy
CO2 CO HC NOx PM FuelEco

AveAcc 0.84+ 0.81+ 0.79+ 0.84+ 0.77+ -0.76+

MaxAcc 0.02 0.18 0.05 -0.09 0.24 0.14
AveDec -0.25 -0.33* -0.31* -0.18 -0.33* 0.15
MaxDec -0.32* -0.27* -0.30* -0.34* -0.22 0.30*

Note:
* Correlation is significant at the 0.05 level
+ Correlation is significant at the 0.001 level

CO: Carbon monoxide PM: Particulate matter AveDec: Average deceleration
CO2: Carbon dioxide FuelEco: Fuel economy MaxDec: Maximum deceleration
HC: Hydrocarbon AveAcc: Average acceleration
NOx: Oxides of nitrogen MaxAcc: Maximum acceleration

The effects of average deceleration on the metrics are less than the corresponding effects of 
average acceleration because the correlations are low. The main reason is that during deceleration 
an engine is often at idle, so deceleration activities do not increase or decrease emissions and 
fuel consumption. However, when a vehicle accelerates, more fuel is consumed, producing more 
emissions (Wang et al. 2000). In addition, maximum acceleration and deceleration do not correlate 
with emissions and fuel economy, possibly because both metrics correspond to single points in a 
cycle. Based on the above analysis, average deceleration, maximum acceleration, and maximum 
deceleration were removed from further consideration. 

Thus, through the initial correlation analysis of 13 cycle metrics, six metrics were determined 
to be useful for emissions and fuel economy modeling, and seven were removed because they 
were either redundant or appeared to have little correlation with emissions and fuel economy. The 
selected six-cycle metrics retained are average speed with idle, percentage idle, stops per mile, 
standard deviation of vehicle speed with idle, kinetic intensity, and average acceleration.

DETERMINATION OF ORDER OF IMPORTANCE 
OF THE SELECTED CYCLE METRICS

The following section focuses on the effects of the six chosen metrics and their order of importance 
in emission and fuel economy. Non-parametric correlation and stepwise regression analysis were 
performed to evaluate their effects. 

Non-parametric Correlation Between Selected Cycle Metrics and Emissions and Fuel Economy

As previously mentioned, if a nonlinear relationship actually exists between paired variables, 
Pearson’s correlation will underestimate it. For example, in this study, the Pearson’s correlation 
between carbon dioxide and average speed is -0.78 with a coefficient of determination of 0.60. 
The two variables have a power decay relationship, and this relationship exhibits a much better fit 
(R-square of 0.91) than the linear fitting (R-square of 0.60). Considering this, the non-parametric 
statistical correlation, Spearman’s correlation, was used to evaluate the relationship accurately. The 
Spearman’s correlation (ρ) is a rank correlation of the data and it does not require variables to be 
normally distributed nor linear. The meaning and range of ρ are essentially the same as that of 
Pearson’s correlation with a zero value representing no correlation, one or minus one indicating 
a perfect positive or negative fit, respectively. A ρ between a zero and one means increasing X 
corresponds to increasing Y and vice versa, and ρ between a zero and minus one means increasing 
X corresponds to decreasing Y and vice versa. 
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 The Spearman’s correlations between the six selected cycle metrics with emissions and fuel 
economy are in Table 5 together with their statistically significant levels. Average acceleration has 
the smallest correlation, making it the least important among the six selected metrics. Below is a 
detailed analysis for the importance of the other five metrics.

Table 5: Non-parametric Spearman’s Correlation
CO2 CO HC NOx PM FuelEco

AspedWID -0.9546 -0.965 -0.9208 -0.908 -0.9131 0.9558
PercID 0.9144 0.8674 0.8321 0.9172 0.8552 -0.9055
Stops/Mi 0.954 0.9665 0.9134 0.9033 0.9339 -0.9528
VstdWID -0.8676 -0.8917 -0.8634 -0.8015 -0.8014 0.8729
AveAcc 0.6309 0.5441 0.5466 0.5833 0.5871 -0.6252
KInt 0.9537 0.9423 0.877 0.9032 0.9183 -0.9534

Note: All correlations are significant at the 0.0001 level (p<0.0001)

CO: Carbon monoxide AspedWID: Average vehicle speed with idle CharAcc:Characteristic acceleration 
CO2: Carbon dioxide PercID: Percentage idle AveAcc: Average acceleration
HC: Hydrocarbon Stops/Mi: Stops per mile
NOx: Oxides of nitrogen VstdWID: Standard deviation of vehicle speed with idle
PM: Particulate matter KInt: Kinetic intensity
FuelEco: Fuel economy AeroV: Aerodynamic speed

Carbon Dioxide (CO2) Emissions: The carbon dioxide emissions have the second strongest 
correlation with average speed with a coefficient of -0.9546, indicating that higher vehicle average 
speed results in lower carbon dioxide emissions. Actually, in addition to carbon dioxide, all other 
emissions have negative correlations with average speed. This shows that higher average speed 
produces lower emissions, which is consistent with previous findings (Wayne et al. 2007). Higher 
vehicle average speed involves fewer accelerations and decelerations, resulting in lower emissions. 
Stops per mile have the second largest correlation of 0.9540 followed by kinetic intensity with 
a correlation of 0.9537. Positive correlations imply that more stops per mile and higher kinetic 
intensity produce higher carbon dioxide emissions. Since the values of these three correlations 
are very close to each other, it is hard to tell which metric is most important for carbon dioxide 
emissions. Percentage idle and the standard deviation of vehicle speed have correlations of 0.9144 
and -0.8676 with carbon dioxide emissions, respectively. The negative correlation shows that 
carbon dioxide emission decreases with increased standard deviation of vehicle speed. However, at 
the same average speed, increased standard deviation usually implies more transient cycle features, 
which produce higher carbon dioxide. 

Carbon Monoxide (CO) Emissions: For carbon monoxide emissions, the variable stops per mile 
has the strongest positive correlation of 0.9665 with it, which is reasonable since carbon monoxide 
emissions in grams per mile are sensitive to the transient features of driving activities (Clark et 
al. 2002). The more stop-and-go features, the more deviations there are from a steady state, and 
the higher carbon monoxide emissions that are produced. Average speed has the second strongest 
correlation of -0.965 and kinetic intensity has a correlation of 0.942.

Hydrocarbon (HC) Emissions: Hydrocarbon emissions have the strongest correlation of 0.92 with 
average speed, followed by stops per mile of 0.91. The other correlations are below 0.9, indicating 
that stops per mile and average speed are the two most important metrics for hydrocarbon emissions.
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Oxides of Nitrogen (NOx) Emissions: Oxides of nitrogen emissions show the strongest correlation 
with percentage idle, which is consistent with the fact that excessive idle could produce more of it 
(Clark et al. 2002). It is also noticed that average speed, stops per mile, and kinetic intensity have 
strong correlations of 0.9 and above with oxides of nitrogen, indicating their significance in this type 
of emissions.

Particulate Matter (PM) Emissions: Particulate matter shows the strongest correlation of 0.93 
with stops per mile. Particulate matter is also highly correlated with carbon monoxide (0.9246), 
reinforcing that both are sensitive to the transient features of driving activities. In addition, particulate 
matter has strong correlations above 0.9 with average speed and kinetic intensity.

Fuel Economy: Fuel economy strongly correlates with average speed with a correlation coefficient 
of 0.9558, indicating the higher the average speed the lower the amount of fuel consumed. It does 
not mean this trend would be consistent at much higher average speed levels. Previous studies 
showed that fuel economy reaches a maximum at a specific vehicle speed and decreases at higher 
average speeds as aerodynamic drag begins to dominate. The result is a parabolic curve (Wayne et 
al. 2007, Rakha and Ding 2003).

The order of significance of the six-cycle metrics’ impacts on emissions and fuel economy 
are in Table 6. Strong, moderate, and weak correlations are defined as coefficients higher than 0.9, 
between 0.8 and 0.9, and below 0.8, respectively. Stops per mile and average speed have strong 
correlations with all emissions and fuel economy. This result is consistent with the common 
interpretation that average speed reflects cruise features of driving activities while stops per mile are 
linked to transient features. Emissions and fuel economy might reflect the effects of both cruise and 
the transient features of driving cycles. However, it is difficult to tell which metric is most important, 
because those in the strong correlation category have very similar correlation coefficients.

Table 6: Summary of Order of Importance for the Selected Six Cycle Metrics
Dependent 
Variable Strong Correlation Moderate Correlation Weak Correlation

CO Stops/Mi, AspedWID, KInt VstdWID, PercID AveAcc

CO2 Stops/Mi, AspedWID, PercID, KInt VstdWID AveAcc

HC Stops/Mi, AspedWID VstdWID, KInt, PercID AveAcc

NOx Stops/Mi, AspedWID, PercID, KInt VstdWID AveAcc

PM Stops/Mi, AspedWID, KInt VstdWID, PercID AveAcc

FuelEco PercID, AspedWID, Stops/Mi, KInt VstdWID AveAcc

Note: Strong Correlation: >=0.9; Moderate Correlation: >=0.8 & <0.9; Weak Correlation: <0.8

CO: Carbon monoxide FuelEco: Fuel economy KInt: Kinetic intensity
CO2: Carbon dioxide AspedWID: Average vehicle speed with idle AeroV: Aerodynamic speed
HC: Hydrocarbon PercID: Percentage idle     CharAcc: Characteristic acceleration
NOx: Oxides of nitrogen Stops/Mi: Stops per mile AveAcc: Average acceleration
PM: Particulate matter VstdWID: Standard deviation of vehicle 
  speed with idle
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Regression Analysis

To validate the significant effects of the selected cycle metrics on emissions and fuel economy, 
regression analyses were performed with selected metrics as independent variables. The regression 
models are expressed as in Equation (2) and their coefficients are in Table 7. 

(2) 

where a is an intercept, bi, and ci are regression coefficients, ε is the residual term, and y is the 
dependent variables corresponding to emissions or fuel economy while xi is the set of independent 
variables corresponding to the five selected cycle metrics in Table 6. Average acceleration was not 
considered due to its weak influence on the dependent variables. Squared terms for each of the 
selected cycle metrics were added to account for possible nonlinear relationships, and stepwise 
regression was employed to select the statistically significant variables to be used in the models.

Table 7: Regression Models Based on Selected Metrics

Term CO2 CO HC NOx FuelEco PM

Intercept 507.715 -0.017 0.193*+ 3.236 6.730*+ -0.207*

AspedWID 15.492** - - 0.276*+ -0.046+ -

PercID 3268.232*+ - 0.138*+ 46.742*+ -9.523*+ -

(PercID-0.268)*(PercID-0.268) -6125.302*+ - 0.426*+ - 31.291*+ -

Stops/Mi 111.860** 0.673*+ - 0.286 -0.116 0.068*+

(Stops/Mi-5.20683)*(Stops/Mi-5.20683) 12.603*+ 0.068*+ - 0.069*+ -0.017** 0.001**

VstdWID 17.135 - -0.008*+ -0.132 0.060 0.014*

(VstdWID-12.8037)*(VstdWID-12.8037) -11.253*+ - 0.001*+ -0.070** 0.021*+ -

KInt 73.522+ 0.052 - 0.508* - -

(KInt-3.58075)*(KInt-3.58075) - -0.060+ - - - -

Adjusted R2 0.99 0.98 0.96 0.98 0.98 0.94

RMSE 86.15 0.52 0.01 1.07 0.22 0.07

Note: 
* Significant at the 0.05 level
** Significant at the 0.01 level
+ Significant at the 0.001 level
*+ Significant at the 0.0001 level

RMSE: Root mean square error FuelEco: Fuel economy AeroV: Aerodynamic speed
CO: Carbon monoxide AspedWID: Average vehicle speed with idle CharAcc: Characteristic acceleration
CO2: Carbon dioxide PercID: Percentage idle
HC: Hydrocarbon Stops/Mi: Stops per mile
NOx: Oxides of nitrogen VstdWID: Standard deviation of vehicle speed with idle
PM: Particulate matter KInt: Kinetic intensity

The results were compared with regressions based on average speed as shown in Table 8. For 
each response variable, average speed-based power regressions give larger R-squared values and 
smaller root mean square errors (RMSE) compared to linear, polynomial, power, exponential, and 
logarithmic regressions. All R-squared values are greater than 0.85, except for 0.79 for oxides of 
nitrogen emissions, and the coefficients are statistically significant at the 0.0001 probability level 
(p<0.0001). Compared with the average speed-based regressions in Table 8, the regression results 
based on multiple metrics in Table 7 show adjusted R-squared values above 0.95, except the 0.94 
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for particulate matter, which is good considering the transient dependency of particulate matter 
emissions. Most of RMSE values are substantially reduced (over half), except that of particulate 
matter.

Table 8: Average Speed Based Regressions
Response Regression R2 RMSE
CO2 y = 10021x-0.5343 0.91 306.74
CO y = 64.976x-1.147 0.94 1.18
HC y = 0.5402x-0.5258 0.86 0.02
NOx y = 66.8501x-0.4366 0.79 3.93
FuelEco y = x0.5298 0.91 0.60
PM y = 4.1171x-1.0262 0.90 0.10

Note: 

RMSE: Root mean square error HC: Hydrocarbon FuelEco: Fuel economy
CO: Carbon monoxide NOx: Oxides of nitrogen
CO2: Carbon dioxide PM: Particulate matter

Figure 2 compares the estimated and experimental values of emissions and fuel economy for 
the NYBus cycle based on the old models (regressions based on average speed) and the new models 
(based on selected multiple cycle metrics). For the NYBus cycle, the new models show over 75% 
less percentage errors for all responses. Figure 3 compares the mean percentage errors (MPE) using 
both models after considering all cycle points. It shows that on average the new models have more 
than 40% reduction in MPE for carbon dioxide, hydrocarbons, and fuel economy. It also shows that 
carbon monoxide and particulate matter have MPE above 15% for both models, further indicating 
it is difficult to predict them due to their high sensitivity to transient features of vehicle operation. If 
interaction terms of the selected cycle metrics or the appropriate transformations (such as the Box-
Cox method) of response variables were considered in the analysis, the multiple parameter models 
might show further improvement.

The regression models developed herein were used to determine the impact of cycle metrics 
on emissions and fuel economy. The intent of this analysis was to select cycle metrics for the 
development of a transit fleet emission model for use by transit agencies during vehicle procurement 
and strategic planning. Therefore, comparison and validation against existing average speed-based 
models are not presented here. An overview of the completed transit fleet emissions model and 
comparison of model results with the speed factor based EPA Mobile6 and MOVES models are 
presented in Wayne et al. (2011).
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CONCLUSION

A detailed correlation analysis was performed to investigate the relationships between duty cycle 
metrics and emissions and fuel economy and to identify the most important parameters for modeling. 
From an initial full correlation analysis of 13 cycle metrics, the number of metrics considered most 
useful for modeling was reduced to six. They are average speed with idle, percentage idle, stops 
per mile, standard deviation of vehicle speed, kinetic intensity, and average acceleration. Further 
analysis using non-parametric Spearman’s correlations between the six selected cycle metrics with 
emission and fuel economy shows that average acceleration has the weakest correlation, implying 
that its ability to predict emissions and fuel economy is less significant. Results from the regression 
analysis show how adding selected cycle metrics to average speed (with idle) improves the regression 
models. The results of this study could assist in determining appropriate strategies for later IBIS 
development and implementation of a transit fleet model. 
 This study shows that duty cycles have significant impacts on emissions and the fuel economy 
of transit buses, and it provides a useful framework for the selection of the most influential cycle 
metrics for modeling. Beside average speed, other cycle metrics such as stops per mile, percentage 
idle, standard deviation of vehicle speed, and kinetic intensity were found to be important and 
could be used to predict emissions and fuel economy better. From a green environment and energy 
efficiency viewpoint, this study suggests that if drivers could operate their vehicles less aggressively, 
spend more time in cruise mode, have less stop-and-go patterns, or less idling behavior while 
parking, exhaust emissions and fuel consumption from the transportation sector could be reduced, 
and air quality and energy efficiency could be improved.

0%

5%

10%

15%

20%

CO2 CO HC NOx Fuel
Economy 

PM 

Old Model New Model 

M
ea

n 
Pe

rc
en

ta
ge

 E
rr

or
 (%

)
Figure 3: Mean Percentage Errors Comparison Between Old and New Models



111

JTRF Volume 52 No. 1, Spring 2013

APPENDIX A

AeroV Aerodynamic Speed
ART Arterial Cycle
AspedWID Average Vehicle Speed with Idle
AspedWoID Average Vehicle Speed Without Idle
AveAcc Average Acceleration
AveDec Average Deceleration
Average Speed Average Vehicle Speed with Idle
BEELINE Westchester County NY Beeline Cycle
BRAUN Braunschweig Cycle
CARB California Air Resources Board
CBD Central Business District Cycle
CFR Code of Federal Regulations
CharAcc Characteristic Acceleration
CNG Compressed Natural Gas
CO Carbon Monoxide
CO2 Carbon Dioxide
COMM Commuter Cycle 
EMFAC EMission FACtors Model
EPA Environmental Protection Agency
ETC European Transient Cycle
ETC_12 European Transient Cycle – Urban and Rural Segments
FTA Federal Transit Administration
FuelEco Fuel Economy
GVW Gross Vehicle Weight
HC Hydrocarbon
IBIS Integrated Bus Information System
KInt Kinetic Intensity
MAN Manhattan Bus Cycle
MaxAcc Maximum Acceleration
MaxDec Maximum Deceleration
MOBILE6 Mobile Source Emission Factor Model
MOVES Mobile Vehicle Emission Simulator
mph Miles per Hour
MY Model Year
NOx Oxides of Nitrogen
NYBUS New York Bus Cycle
NY-COMP New York Composite Cycle
OCTA Orange County Transit Authority Cycle
PercID Percentage Idle  
PM Particulate Matter
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Stops/Mi Number of Stops per Mile
Stops/mile Number of Stops per Mile
TransLab Transportable Heavy-Duty Vehicle Emission Laboratory
UDDS Urban Dynamometer Driving Schedule
VMY Vehicle Model Year
VstdWID Standard Deviation of Vehicle Speed with Idle 
VstdWoID Standard Deviation of Vehicle Speed without Idle
WMATA Washington Metropolitan Area Transit Authority
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