
39

JTRF Volume 54 No. 2, Summer 2015

Analyzing Severity of Vehicle Crashes at 
Highway-Rail Grade Crossings: 
Multinomial Logit Modeling
by Wei (David) Fan, Martin R. Kane, and Elias Haile

The purpose of this paper is to develop a nominal response multinomial logit model (MNLM) 
to identify factors that are important in making an injury severity difference and to explore the 
impact of such explanatory variables on three different severity levels of vehicle-related crashes at 
highway-rail grade crossings (HRGCs) in the United States. Vehicle-rail and pedestrian-rail crash 
data on USDOT highway-rail crossing inventory and public crossing sites from 2005 to 2012 are 
used in this study. A multinomial logit model is developed using SAS PROC LOGISTICS procedure 
and marginal effects are also calculated. The MNLM results indicate that when rail equipment 
with high speed struck a vehicle, the chance of a fatality resulting increased. The study also reveals 
that vehicle pick-up trucks, concrete, and rubber surfaces were more likely to be involved in more 
severe crashes. On the other hand, truck-trailer vehicles in snow and foggy weather conditions, 
development area types (residential, commercial, industrial, and institutional), and higher daily 
traffic volumes were more likely to be involved in less severe crashes. Educating and equipping 
drivers with good driving habits and short-term law enforcement actions, can potentially minimize 
the chance of severe vehicle crashes at HRGCs.

INTRODUCTION

Fatalities resulting from motor vehicle crashes is the fifth leading cause of death in the United 
States. Data from the National Highway Traffic Safety Administration indicate that since 1949 more 
than 30,000 (40,000 average) fatalities result from motor vehicle crashes every year. However, 
the current trend shows this number is declining. For example, a 1.9% decrease in crash-related 
fatalities was observed in 2011 as compared with 2010. Nonetheless, crash-related injuries are still 
large in number. In 2011, an estimated 2.22 million people were injured in motor vehicle traffic 
crashes and 2.24 million in 2010 (NHTSA 2012). Fatal crashes on highway-rail grade crossings 
(HRGCs) contributed to 261 deaths in 2010 and 251 in 2011 (FRA 2012). 

HRGCs are conflict points between highway users and rail equipment (e.g., locomotive, freight 
car, caboose, or service equipment car operated by a railway company), which have contributed to 
a considerable amount of crashes in U.S. history. Though the trend of highway user crashes with 
rail equipment is showing a decrease in numbers, much has yet to be done to improve the safety of 
HRGCs. Unlike highway traffic crashes, a significantly high percentage of vehicle-rail crashes lead 
to fatality and injury to vehicle users. For example, data in the past eight years (2005-2012) indicate 
that 8.55% of vehicle-rail crashes were fatal and 26.68% resulted in injury (FRA 2012). However, 
in the case of highway traffic crashes, the percentage of fatal crashes is no more than 2% (NHTSA 
2012). 

Despite the fact that highway user-rail crashes had significant impacts on highway user 
safety, the subject still receives little attention and is under-cited. An understanding of the factors 
contributing to the levels of injury severity is an important step toward making the transportation 
system safer and more attractive. Responsible jurisdictions may use the results of this research to 
derive road user safety measures and policies.
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One of the most important tasks in improving road safety is to uncover influential factors and 
then to develop countermeasures. The relationship between the injury severity of traffic crashes 
and factors such as driver and passenger characteristics, pedestrian age and gender, vehicle type, 
environmental conditions, traffic, and geometric conditions has attracted much attention. A better 
understanding of this relationship is necessary and very important for improving facility design 
so that crashes can be reduced. It is important to note that reducing crash frequency and reducing 
crash-injury severity may necessitate different strategic approaches. The development of effective 
countermeasures requires a thorough understanding of the factors that affect the likelihood of a crash 
occurring or, given that a crash has occurred, the characteristics that may mitigate or exacerbate the 
degree of injury sustained by crash-involved road users. To gain such an understanding, safety 
researchers have applied a wide variety of methodological techniques over the years.

Numerous studies have applied statistical models for crash injury severity studies. Among them, 
the ordered probit, ordered logit, and their variations are the most often used models. Savolainen et 
al. (2011) briefly discussed and summarized a wide range of methodological tools applied to study 
the impact of various factors on motor vehicle crash injury severities. As presented in the paper, 
ordered logit and probit, multinomial logit, binary logit and binary probit, and nested logit are some 
of the frequently used statistical methodologies. In particular, logistic regression has been widely 
applied to model crash severity levels. Variables such as elements of geometric design, traffic 
operational measures, and environmental conditions are considered as independent variables to 
estimate the severity. Savolainen et al. (2011) also applied the logistic regression modeling approach 
(specifically an unordered logit model) to estimate the three levels of highway user crash severity on 
HRGC as a function of various factors involved. The explanatory variables were obtained from the 
USDOT crossing inventory and crash data.

This purpose of this study is to analyze the severity of vehicle crashes at USDOT public HRGCs 
from 2005 to 2012, and to investigate the impact of various factors involved in the crashes. The 
remainder of this paper is organized as follows.  The second section presents a literature review on 
existing studies regarding vehicle crash severity modeling. The third describes the MNL modeling 
methodology. The fourth section discusses the data assembly and analysis of the research. Section 
five presents numerical results and discussion. The sixth section discusses the conclusions and 
recommendations are also made.

LITERATURE REVIEW

Several studies have been conducted to model crash severity and investigate the impacts of various 
factors involved in the crashes. Mercier et al. (1999) conducted a study (using data from the Iowa 
Department of Transportation for 1986 to 1993) and tested the hypothesis that older drivers and 
passengers would suffer more severe injuries than younger adults in the presence of broadside and 
angle collisions of automobiles on rural highways. Logistic modeling, Hierarchical Regression 
Analysis, and Principal Components Regression, were analysis tools applied. Injury severity 
levels, fatal, major, and minor, were considered as dependent categorical variables. Some of the 
independent variables considered were occupant age, occupant position relative to point of impact, 
and protection. According to the study, age-related variables were generally more significant 
predictors of injury severity for females than for males. It was also identified that use of lap and 
shoulder restraints reduces injury severity and is less certain for females. For females only, air bags 
deployed were reported as significant injury severity predictors.

By using sequential binary logistic regression, Dissanayake and Lu (2002) modeled crash 
severity for single-vehicle fixed object crashes involving young drivers using data from the Florida 
Traffic Crash Database for the two-year period (1997 and 1998). The five crash severity categories 
considered were no injury, possible injury, non-capacitating injury, incapacitating injury, and fatal. 
As reported in the study, factors such as alcohol or drug influence, ejection in the crash, point of 
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impact, rural crash locations, existence of curve or grade at the crash location, and speed of vehicle 
significantly increased the probability of more severe crashes. On the other hand, restraint device 
usage and drivers being male were reported to reduce the chance of high severity crashes. It was also 
indicated that factors such as weather condition, residence location, and physical condition have no 
significant relation in the model.

Duncan et al. (1998) conducted a study to investigate car occupant injury severity in two-vehicle 
passenger car-truck rear-end collisions by using an ordered probit model. The 1993-95 Highway 
Safety Information System (HSIS) data for collisions between heavy trucks and passenger cars in 
North Carolina were used for analysis. As reported in the study, factors such as darkness, high speed 
differentials, high speed limits, grades, being in a car struck to the rear, driving while drunk, and 
being female increased the passenger vehicle occupant injury severity. On the other hand, factors 
such as snowy or icy roads, being in a child restraint, and congested roads decreased the severity 
level. It was also indicated that interaction effects of cars being struck to the rear with high speed 
differentials and car rollovers were significant and increased the injury severity.

Donnell and Mason (2004) conducted a study and developed median-related crash severity 
models using data collected from Pennsylvania Department of Transportation between 1994 and 
1998. Three crash severity classes, fatal, injury, and property damage only (PDO), were considered 
as independent variable outcomes. Both ordinal and nominal response logistic regression models 
were developed in the study. As indicated in the report, the ordinal response model gave better 
results for cross-median crashes. On the other hand, the nominal response model gave better results 
for median-barrier crashes. Furthermore, variables such as highway surface conditions, use of drugs 
or alcohol, presence of an interchange entrance ramp, horizontal alignment, crash type, and average 
daily traffic volume were reported to have some significant positive or negative effects on crash 
severity.

By using paired comparison analysis and ordered probit model, Renski at al. (1999) conducted 
a study to test the hypothesis that a speed limit increase will result in an increase in driving speed 
and produce higher crash severity. The study was focused on single-vehicle crashes on interstate 
roadways in North Carolina. As reported in the study, increasing speed limits from 89 to 97 km/hour 
(55 to 60 mph) and from 89 km/hour (55 mph) to 105 km/hour (65 mph) increased the probability of 
sustaining minor and non-capacitating injuries. However, the study indicated that increasing speed 
limits from 105 km/hour (65 mph) to 113 km/hour (70mph) did not show a significant effect on 
crash severity. 

Huang et al. (2002) investigated the effects of road diets in which four-lane undivided roads 
were converted into three lanes. A road diet, also called a lane reduction or road rechannelization, 
is a technique in transportation planning whereby a road is reduced in number of travel lanes and/
or effective width in order to achieve systemic improvement. Twelve road diets and 25 comparison 
sites in California and Washington cities were analyzed in the study. A before and after analysis was 
conducted and it was reported that road-diet crashes that occurred during the “after” period were 
observed to be about 6% lower than that of the comparison sites. 

Khattak (2001) conducted a study that investigated the effect of vehicle technologies on crash 
injury severity. The North Carolina 1994-1995 HSIS crash data were used for the analysis. Three 
separate ordered probit models were developed for the three drivers, Driver 1 (leading), Driver 2 
(striking), and Driver 3 (striking in a three-vehicle crash). As indicated in the study, in a two-vehicle 
rear-end collision the leading driver is more likely to be injured, whereas in a three-vehicle collision 
the driver in the middle is more likely to be injured. It was also stated that being in a newer vehicle 
protects the driver in rear-end collisions. Moreover, the study showed the benefit of technological 
improvements on driver safety. 

Mercier at al. (1997) performed a study and tested the hypothesis that older drivers and 
passengers would suffer more severe injuries than younger adults in the presence of head-on 
collisions of automobiles on rural highways. Study data were drawn from the Iowa Department 
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of Transportation’s accident files from 1986 through part of 1993. Logistic modeling, Hierarchical 
Regression Analysis, and Principal Components Regression were applied. Injury severity levels, 
fatal, major, and minor, were considered as dependent categorical variables (which take on one of a 
limited number of possible values). The independent variables considered included, among others, 
occupant age, occupant position relative to point of impact, and level of protection. As stated in the 
study, age was an important factor in predicting injury severity for both men and women. The study 
concluded that older drivers and passengers experienced more severe injury than any of the other 
age groups. Use of lap and shoulder devices was reported to be more important for men than women 
while the reverse was true for deployed air bags.

Chira-Chavala et al. (1996) investigated the characteristics and probable causes of light rail 
transit system crashes and developed a crash severity model for the Santa Clara County Transit 
Agency. A binary logit model was applied to predict the probability of injury accident as a function 
of explanatory variables such as speeds before collision of light rail vehicles and motor vehicles 
and movement of the motor vehicle before collision. As reported in the study, left-turn vehicle 
movements, higher speeds of the motor vehicle or the LRV, and accidents occurring during peak 
hours increased the probability of injury crashes. 

Chen and Jovanis (2000) developed and tested the variable-selection procedure that avoids 
problems occurring due to the presence of a large number of potential factors, the complex nature 
of crash causes and outcomes, and a large number of categories in crash-severity modeling. Bus-
involved crash data for Freeway 1 in Taiwan from 1985 through 1993 were used. The procedure 
consisted of the chi-squared automated interaction detection (CHAID) method to collapse categories. 
Person chi-square test was used to assess the relationship between dependent and independent 
variables and log-linear modeling techniques. As indicated in the study, the log-linear model showed 
that late-night or early-morning driving increased the risk of severe injury crashes for bus drivers. It 
was also stated that bus crashes involving a large truck or tractor-trailers increased the risk of severe 
injury crashes.

By using an ordered probit model, Khattak at al. (2002) explored factors contributing to more 
severe older driver (age 65 and above) crash injury severity by analyzing 1990-1999 crash data 
from Iowa. According to the study, older male drivers are more prone to injury as compared with 
older female drives. It was stated that older drivers under the influence of alcohol experienced more 
severe injuries. It was also indicated that older driver injuries involving farm vehicles are more 
severe as compared with other vehicle types. 

Xie et al. (2009) conducted a study that demonstrated application of a Bayesian ordered probit 
model in drivers’ injury severity analysis. In the Bayesian probit model, prior distributions such 
as means and variances were included, reflecting the analysts’ prior knowledge about the data. 
Comparisons were made between Bayesian ordered probit and conventional ordered probit models. 
As reported in the study, for large data size, model fitting results obtained from the Bayesian and the 
conventional probit model have no significant differences. It was also reported that for small sample 
size, a Bayesian probit model produced parameter estimates with better prediction performance than 
the conventional ordered probit model.

Some recent research efforts were also made to the joint estimation of two dependent variables 
that were closely related to each other in order to improve the efficiency of uncovering the 
influential factors. For example, Ye et al. (2009) developed a simultaneous equations model of crash 
frequency by collision type for rural intersections. Ye et al. (2013) developed and presented a similar 
multivariate Poisson regression to model the crash frequency by severity level for freeway sections 
in this paper. Along this same line, a generalized Poisson model was developed to assess the effects 
of demographic factors, driving habits, and medicinal use on elderly driver automobile crashes 
(Famoye et al. 2004). Likewise, several multivariate Poisson-lognormal regression models were 
presented for jointly modeling crash frequency by severity and applied to a case study in California 
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(Park and Lord 2007). The results showed promise toward the goal of obtaining more accurate 
estimates by accounting for correlations and over-dispersion (Park and Lord 2007).

Gitelman and Hakkert (1997) developed a method to evaluate road-rail crossing safety with 
limited accident statistics when the need for grade separation was discussed using available Israeli 
accident data. Austin and Carson (2002) developed an alternate highway-rail crossing accident 
prediction model using negative binomial regression, which showed great promise. Saccomanno 
et al. (2004) developed risk-based models for identifying high-rail grade crossing blackspots (i.e., 
crossings with unacceptable risks of involving high expected collision frequencies or consequences 
or both). Miranda-Moreno et al. (2005) compared the relative performance of three alternative 
models for ranking locations for safety improvement, which included the traditional negative 
binomial model, the heterogeneous negative binomial model, and the Poisson lognormal model. 
These models were calibrated using a sample of Canadian highway-railway intersections with an 
accident history of five years. It was concluded that the choice of model assumptions and ranking 
criteria can lead to considerably different lists of hazardous locations. Saccomanno et al. (2007) 
conducted a research study of estimating countermeasure effects for reducing collisions at highway-
railway grade crossings. Park and Saccomanno (2007) developed a propensity score method to 
reduce treatment selection bias for estimating treatment effects. The model was also applied to 
Canadian highway-railway grade crossings data to estimate reductions in collisions due to upgrades 
in warning devices. It was shown that the propensity score method could be used to reduce treatment 
selection bias. Hu et al. (2010) investigated key factors and developed a generalized logit model to 
estimate the accident severity at railroad grade crossings in Taiwan.

As discussed, crashes occurring at HRGCs have a significant effect on highway user safety, 
and the importance of conducting research in such areas is evident. However, compared with the 
amount of work on general highway traffic crashes, this subject receives relatively less attention, 
although some research efforts have been made in this particular area. As such, the objective of this 
research is to explore the impacts of various factors contributing to different levels of crash severity 
to vehicle users as a result of vehicle-rail crashes on HRGCs. A nominal response multinomial logit 
model with three levels of severity was used to model the impact of various factors that include 
vehicle driver characteristics, environmental factors, railroad crossing characteristics, highway 
characteristics, land use type, and more. The three levels of responses considered were fatality, 
injury, and no injury. The SAS PROC LOGISTICS procedure was used to develop the model.

METHODOLOGY

The MNLM formulation is well discussed by Long (1997). If y is the response variable with J 
nominal (i.e., categorical) outcomes (which takes on one of a limited number of possible values), 
then the assumption of the multinomial logit model is that category 1 through J are not ordered 
(i.e., not arranged in an increasing or decreasing order). Also, let Pr(y=m|x) be the probability of 
observing outcome m given the independent variable x. The model for y is constructed as follows:

•	 Assume that Pr(y=m|x) is a linear combination xβm. The vector βm= (β0m…. βkm….. βKm) contains 
the intercept β0m  and coefficients of βkm for the effects of xk   on outcome m. 

•	 To ensure non negativity for the probabilities, the exponential of xβm is used.

•	 For the probabilities to sum to 1, divide exp(xβm)  by  .

(1)      			               
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Though the probability sum is 1, the set of parameters that generates the probabilities is not 
identified since more than one set of parameters can generate the same probabilities. In order 
to identify the set of parameters that generate the probabilities, a constant must be imposed. By 
imposing one of the parameter estimates to be equal to zero (assume β1=0), the model can be written 
as follows:

(2)      			                                  

(3)      			                                                 

The parameter estimates are determined using maximum likelihood estimation. If the 
observations are independent, the likelihood eq. (4) is given by:

(4)      			                                                                

Where Pi is the probability of observing whether values of y was actually observed for the 
ith observation. Combining the eq. (1) with this eq. (4) in place of Pi the likelihood eq. (5) can be 
written as:

(5)      			                                                   

Where   is the product over all cases for which yi is equal to m. Taking logs, we may obtain 
the log likelihood function, which can be maximized with numerical methods to estimate the β’s.

The overall model fitness can be compared by using the model’s log-likelihood at convergence 
with the log-likelihood of a naive model (model with all coefficients set to zero, which is equivalent 
to assigning equal probability for all outcomes). It is also possible to compare a model with only 
alternative constants (assigning probability to outcomes equal to the observed share of the outcomes 
in the dataset).

(6)      			               	

Where LL (β) represents the log-likelihood at model convergence, LL(0) represents the log-
likelihood of a naïve model (without information). The ρ2 goes from 0 (for no improvement in the 
log-likelihood) to 1 for a perfect fit. A value for ρ2 larger than 0.1 indicates meaningful improvement 
(Long 1997).

The marginal effect or partial change can be determined by taking derivative of Eq. (1) with 
respect to xk as described in the following eq. (7).

(7)	

Marginal effect is the slope of the curve relating xk to Pr(y=m|x), holding other variables constant. 
Variables are held at their means, possibly with dummy variables at 0 or 1.Though the computation 
of the change in the probability is important to interpret the effects of the MNLM, it has limitations. 
Firstly, the discrete change indicates the change for a particular set of values of the independent 
variables, which means at different levels of these variables, the changes will be different. And the 
second limitation is that it measures the discrete change, which does not indicate the changes among 
the dependent outcome due to infinitely small changes in independent variables (Long 1997).

An odds ratio can also be used in the interpretation of the developed model. The odds ratio 
is defined as the ratio of the odds of those with the risk factor to the odds for those without the 

]
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risk factor. Generally, the odds ratio associated with a one-unit increase in the risk factor can be 
computed by the exponential function of the regression coefficient of that risk factor (SAS 2008).

DATA ASSEMBLY AND ANALYSIS

Vehicle-rail crash data on the USDOT public crossing sites from 2005 to 2012 are used in this study. 
In order to acquire more explanatory variables, the USDOT highway-rail crossing inventory was 
also included. The crash data and the crossing inventory data were merged based on the USDOT 
identification number. The SAS PROC SQL was used to merge and clean the data (i.e., removing 
data errors). After the data merging and cleaning process, a total of 7,414 records were obtained 
and used in the modeling stage. The data used to create the data set were obtained from the Federal 
Railroad Administration (2012). 

Table 1 presents the descriptive statistics of some of the variables from such HRGC crash 
and inventory data. As shown, the distribution of vehicle-rail crash severity is 6.80%, 26.63% and 
66.58% for fatal, injury, and no injury, respectively. This distribution of crash severity indicates 
33.43% of vehicle crashes at HRGC sites lead to fatality or injury. The majority (78.64%) of vehicle-
rail crashes at HRGC sites occurred when the rail equipment struck the vehicle while the remaining 
(21.36%) were when the vehicle struck the rail equipment. It is shown in the table that a majority 
(53.09%) of vehicles involved in the vehicle-rail crashes are cars, and the majority (71.01%) of 
vehicle crashes occurred in clear weather conditions.

The HRGC sites where crashes occur are located in different development areas. As one can see 
from Table 1, 32.37% of the crossings are located in open space areas, 21.51% in residential areas, 
and 28.10% in commercial areas. The rest are found in industrial and institutional development 
areas. The majority (74.99%) of the HRGCs cross two-lane highways. Descriptive statistics of other 
variables are also shown in the table. All variables that are available in the database are considered in 
this study. Some of the continuous variables are converted into categorical variables and the MNLM 
is applied to estimate the model parameters.

RESULTS AND DISCUSSION

Many variables obtained from the crossing inventory and crash data were used in developing the 
nominal response MNLM. During the final preferred model development process, some of the 
variables were found to be statistically insignificant and hence removed in a stepwise manner. PROC 
LOGISTIC procedure was applied with significance level being 0.1 to retain some of the variables. 

Tables 2 and 3 present the results obtained from this study. In this modeling, three vehicle-rail 
crash severity levels (fatal crashes, injury crashes, and no injury crashes) were considered as the 
dependent variable. Among the three crash severity levels, no injury crashes were considered the 
base case. Therefore, coefficients estimated for the explanatory variables are values representing 
the relative effect of contributing factors on fatal or injury crashes compared with no injury crashes. 
Positive estimates in the model indicate that the chance of injury or fatal crash increases as the value 
of the independent variables increases, while negative estimates indicate that the chance of injury or 
fatal crash decreases as the value of the independent variables increases. 

As shown in Table 2, some of the variables are not statistically significant. However, since the 
main interest of this paper is to examine how the chance of injury and fatal (both) crash increases 
or decreases (separately or simultaneously) corresponding to a one-unit change in the value of the 
independent variables, for the sake of facilitating interpretation of the results, those variables were 
still retained in the model if at least one of variables/factors in the same parameter category was 
significant in at least one of the models (injury and/or fatality). This actually induces reduction in 
efficiency of the model. Furthermore, a 90% confidence level was considered instead of 95% (Tay 
et al. 2011). 
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Table 1: Descriptive Statistics of Variables from HRGC Crash and Inventory Data

Variable Category Frequency Percent

Crash Characteristics

INJURY
(crash severity level)

3=Fatal crashes 504 6.80
2=Injury crashes 1974 26.63
1=No Injury crashes 4936 66.58

TYPACC
(Type of accident)

1=Train struck vehicle 5830 78.64
2=Vehicle struck train 1584 21.36

Vehicle Characteristics

TYPVEH
(Type of vehicle)

1=Auto 3936 53.09
2=Truck 542 7.31
3=Truck trailer 1298 17.51
4=Pickup truck 1317 17.76
5=Van 306 4.13
6=Bus 10 0.13
7=School Bus 5 0.07

VEHSPD
(Vehicle speed)

1=<40km/hour (<25mph) 6312 85.14
2=40-72km/hour (25-45mph) 830 11.20
3=>72km/hour (>45mph) 272 3.67

(AADT)
(Average annual daily traffic)

1=<10,000 6525 88.01
2=10,000-20,000 602 8.12
3=20,000-30,000 177 2.39
4=>30,000 110 1.48

Train Characteristics

TRNSPD
(Train speed)

1=<40km/hour (<25mph) 2999 40.45
2=40-72km/hour (25-45mph) 2549 34.38
3=>72km/hour (>45mph) 1866 25.17

Vehicle Driver Characteristics

DRVAGE

1=<25 Years 1186 16.00
2=25-60 Years 3978 53.66
3=>60 Years 1029 13.88
Missing 1221 16.47

DRIVGEN
(Vehicle driver gender)

1=Male 5645 76.14
2=Female 1769 23.86

Highway Characteristics

HWYPVED
(Highway surface type)

1=Paved 6042 81.49
2=Unpaved 1372 18.51

HWYSGNL
(Highway signal)

1=Not present 7215 97.32
2=Present 199 2.68
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Table 1 (continued)
Variable Category Frequency Percent

TRAFICLN
(No. of traffic lane)

1=1 Lane 644 8.69
2=2 Lanes 5560 74.99
3=3 Lanes 87 1.17
4=4 Lanes 872 11.76
5=≥5 Lanes 251 3.39

Environmental Characteristics

DEVELTYP
(Development area type)

1=Open space 2400 32.37
2=Residential 1595 21.51
3=Commercial 2083 28.1
4=Industrial 1226 16.54
5=Institutional 110 1.48

WEATHER
(Weather condition)

1=Clear 5265 71.01
2=Cloudy 1406 18.96
3=Rain 445 6
4=Fog 107 1.44
5=Sleet 15 0.2
6=Snow 176 2.37

TEMP
(Temperature)

1=<10oC (50oF) 2074 27.97
2=10o-27oC (50o-80oF) 3624 48.88
3=>27oC (80oF) 1716 23.15

NEAREST
(Intersecting IN or Near city)

1=In city 4244 57.24
2=Near city 3170 42.76

Crossing Characteristics

XSURFACE
(Crossing surface type)

1=Timber 2049 27.64
2=Asphalt 3015 40.67
3=Asphalt & Flange 445 6
4=Concrete 920 12.41
5=Concrete & Rubber 266 3.59
6=Rubber 413 5.57
7=Metal 3 0.04
8=Unconsolidated 256 3.45
9=Other 47 0.63

XBUCK
(Cross bucks)

1=Not Present 2348 31.67
2=Present 5066 68.33

FLASH
(Flashlight)

1=Not present 3475 46.87
2=Present 3939 53.13

GATES
(Gates)

1=Not Present 6371 85.93
2=Present 1043 14.07
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Table 2: Multinomial Logistic Model Regression Results

Parameter
Injury Fatal

Estimate P-value Estimate P-value

Intercept -1.1553* <.0001 -4.4843* <.0001

VEHSPD (Ref:<40km/hour (<25mph))        

40-72km/hour (25-45mph) 0.6457* <.0001 0.7110* <.0001

>72km/hour (>45mph) 0.9211* <.0001 1.6351* <.0001

TYPVEH (Ref: Auto)        

Truck 0.0581 0.6299 0.0846 0.6604

Truck-trailer -0.1967* 0.0316 -1.5297* <.0001

Pick-up truck 0.1480* 0.0766 0.0385 0.7808

Van 0.0756 0.6144 -0.2670 0.3401

Bus 0.7259 0.4470 -9.9575 0.9790

School bus 1.0507 0.2969 -10.0643 0.9820

TYPACC (Ref: vehicle struck rail equipment)        

Rail equipment struck vehicle -0.1107 0.1476 0.6935* <.0001

TEMP(Ref: <10oC (50oF))        

10o-27oC (50o-80oF) 0.1029 0.1654 0.0671 0.6081

>27oC (80oF) 0.2520* 0.0034 0.1148 0.4494

WEATHER (Ref: Clear)        

Cloudy -0.0399 0.6056 -0.0438 0.7463

Rain -0.1611 0.2240 -0.4313 0.1130

Fog 0.0295 0.9021 -1.2110 0.1003

Sleet 0.4891 0.4086 -10.7328 0.9568

Snow -0.6097* 0.0087 -0.6858 0.1285

TRNSPD (Ref: <40km/hour (<25mph))        

40-72km/hour (25-45mph) 0.6274* <.0001 1.7280* <.0001

>72km/hour (>45mph) 0.6433* <.0001 2.7725* <.0001

DRIVGEN (Ref: Female)        

Male 0.3848* <.0001 0.2965* 0.0176

DEVELTYP(Ref: Open space area)        

Residential -0.1907* 0.0231 -0.1882 0.1913

Commercial -0.3342* <.0001 -0.3510* 0.0171

Industrial -0.4128* <.0001 -0.1197 0.5122

Institutional -0.4649* 0.0666 -0.5219 0.2897
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Parameter
Injury Fatal

Estimate P-value Estimate P-value

XSURFACE(Ref: Timber)        

Asphalt -0.2094* 0.0043 -0.4813* 0.0002

Asphalt & Flange -0.1327 0.3229 -0.6683* 0.0143

Concrete 0.0793 0.4405 0.0422 0.8002

Concrete & Rubber 0.0897 0.6240 0.5610* 0.0428

Rubber 0.0745 0.6092 -0.3451 0.2467

Metal -0.4770 0.7027 -10.1543 0.9825

Unconsolidated -0.3027* 0.0669 -0.1017 0.6871

Other -0.2763 0.4752 -0.3334 0.6653

AADT(Ref:<10,000)        

10,000-20,000 -0.0882 0.4556 -0.4342* 0.0698

20,000-30,000 -0.5348* 0.0184 -0.8054* 0.0755

>30,000 -0.2838 0.2595 -0.9880* 0.0788

DRIVAGE(Ref:<25 Years)        

25-60 Years 0.0727 0.3548 0.2983* 0.0452

>60 Years 0.2706* 0.0069 1.2399* <.0001

Number of observation= 7,414, ρ2 =0.011, χ2 for likelihood ratio =943.787, P-value for chi square= 0.000

Table 2 (continued)

Based on the parameter estimates obtained in Table 2, the MNL models can be written as 
follows. Note that the information about driver under the influence or not is unavailable in the 
dataset and thus not included in the analysis.

(8) 

(9) 

Where:

X1 = Vehicle speed category (1 if vehicle speed is 40-72 km/hour (25-45 mph), 0 otherwise)

X2 = Vehicle speed category (1 if vehicle speed is >72 km/hour (>45 mph), 0 otherwise)

X3 = Vehicle type indicator (1 if vehicle is truck-trailer, 0 otherwise)

X4 = Vehicle type indicator (1 if vehicle is pick-up truck, 0 otherwise)

X5 = Accident type indicator (1 if rail equipment struck vehicle, 0 otherwise)

X6= Temperature indicator (1 if temperature is greater than 27oC (80oF), 0 otherwise)
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X7= Weather indicator (1 if snowy weather, 0 otherwise)

X8= Weather indicator (1 if foggy weather, 0 otherwise)

X9 = Train speed category (1 if train speed is 40-72 km/hour (25-45 mph), 0 otherwise)

X10 =Train speed category (1 if train speed is >72 km/hour (>45 mph), 0 otherwise)

X11= Vehicle driver gender indicator (1 if male, 0 otherwise)

X12 =Development area type indicator (1 if residential, 0 otherwise)

X13= Development area type indicator (1 if commercial, 0 otherwise)

X14= Development area type indicator (1 if industrial, 0 otherwise)

X15= Development area type indicator (1 if institutional, 0 otherwise)

X16= HRGC surface type (1 if surface is asphalt, 0 otherwise)

X17= HRGC surface type (1 if surface is unconsolidated, 0 otherwise)

X18= HRGC surface type (1 if surface is asphalt and flange, 0 otherwise)

X19= HRGC surface type (1 if surface is concrete and rubber, 0 otherwise)

X20= Traffic volume indicator (1 if AADT is 10,000-20,000, 0 otherwise)

X21= Traffic volume indicator (1 if AADT is 20,000-30,000, 0 otherwise)

X22= Traffic volume indicator (1 if AADT is >30,000, 0 otherwise)

X23= Vehicle driver age indicator (1 if age is 25-60 years, 0 otherwise) 	

X24= Vehicle driver age indicator (1 if age is >60 years, 0 otherwise)

In particular, it should be noted that by dropping insignificant variables (one at a time) through 
conducting a series of tests, the preferred model may actually be different from the above models. 
However, again, since the main interest of this paper is to examine how the chance of injury and 
fatal (both) crash increases or decreases (separately or simultaneously) corresponding to a one-unit 
change in the value of the independent variables, for the convenience and consistency of illustration 
purposes, the MNL models developed in eqs. (8-9) are used as the final preferred models. Based 
on the above MNL model eqs. (8-9), the marginal effect/value is also determined and presented in 
Table 3. As can be seen in Table 3, the sum of marginal effect is zero, which satisfies the requirement 
that the sum of probability is 1. Using the values in the first row of Table 3 as an example, as vehicle 
speed changes from category (<40 km/hour [<25 mph]) to category (40-72 km/hour [25-45 mph]), 
the probability of fatal and injury crashes increases by 0.028 and 0.135, respectively, while the 
probability of no injury crashes decreases by -0.163. The marginal effect for the remaining variables 
provides a great deal of valuable information for interpreting results.

As shown in Table 2, vehicle speed was one among several explanatory variables that are 
considered and used to estimate the vehicle-rail crash severity level. Vehicle speed was categorized 
into three levels (<40 km/hour [<25 mph], 40-72km/hour [25-45mph], and >72 km/hour [>45  
mph]). According to the result, two speed categories (40-72 km/hour [25-45 mph] and >72 km/hour 
[>45 mph]) were statistically significant and had higher probability of resulting in injury and fatal 
crashes. It was also shown that the parameter estimate for vehicle speed category three (>72 km/
hour [>45 mph]) was higher than vehicle speed category two (40-72 km/hour [25-45 mph]). This 
indicates that higher vehicle speed has a detrimental effect of increasing the chance of fatal and 
injury crashes. In this regard, reducing vehicle speed will definitely help in reducing the chance of 
more severe vehicle-rail crashes at HRGCs.
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Table 3: Marginal Effects Results
Variable P(Fatal) P(Injury) P(No injury)
Vehicle speed (40-72 km/hour [25-45 mph]) 0.028 0.135 -0.163
Vehicle speed (>72 km/hour [>45 mph]) 0.026 0.323 -0.349
Vehicle type (truck-trailer) 0.020 -0.316 0.296
Vehicle type (pick-up) 0.009 0.005 -0.014
Accident type (rail equipment struck vehicle) -0.022 0.148 -0.125

Temperature (>27oC (80oF)) 0.014 0.019 -0.033

Weather (snow) -0.026 -0.131 0.157
Weather (foggy) 0.028 -0.254 0.226
Train speed (40-72 km/hour [25-45 mph]) 0.005 0.349 -0.353
Train speed (>72 km/hour [>45 mph]) -0.017 0.567 -0.550
Vehicle driver gender (male) 0.019 0.054 -0.073
Development area type (residential) -0.009 -0.035 0.044
Development area type (commercial) -0.015 -0.066 0.081
Development area type (industrial) -0.025 -0.016 0.041
Development area type (institutional) -0.020 -0.099 0.119
HRGC surface type (asphalt) -0.004 -0.096 0.100
HRGC surface type (unconsolidated) -0.018 -0.015 0.033
HRGC surface type (asphalt and flange) 0.006 -0.137 0.132
HRGC surface type (concrete and rubber) -0.006 0.116 -0.110
Traffic volume (AADT 10,000-20,000) 0.003 -0.089 0.086
Traffic volume (AADT 20,000-30,000) -0.018 -0.157 0.176
Traffic volume (AADT >30,000) 0.002 -0.201 0.199
Vehicle driver age (25-60 years) -0.002 0.061 -0.059

Vehicle driver age (>60 years) -0.009 0.254 -0.245

Likewise, train speed was categorized into three levels and also found to be statistically 
significant. Compared with train speed category one (<40 km/hour [<25 mph]), both higher train 
speed categories (40-72 km/hour [25-45 mph] and >45 mph) had increased probabilities of injury 
and fatal crashes. Like vehicle speed, higher train speed also has a detrimental effect of increasing 
the chance of fatal and injury crashes. As shown in Table 3, the marginal effect result indicates that 
probabilities of injury and fatal crashes increase as speed of vehicle increases. On the other hand, 
the probability of no injury crashes decreases as vehicle speed increases.

Seven vehicle categories (ranging from automobile to truck-trailer to school bus types) were 
considered in this study. Among these seven categories, both truck-trailers and pick-up trucks were 
found to be statistically significant. As shown in Table 2, truck-trailer vehicles were less likely to 
result in injury and fatal crashes as compared with automobiles. On the other hand, pickup trucks 
were more likely to result in injury and fatal crashes. The marginal effect result as shown in Table 3 
indicates that truck-trailer vehicles increase the likelihood of fatal and no injury crashes while they 
decrease injury crashes; and that pickup trucks increase the likelihood of fatal and injury crashes 
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and decrease that of no injury crashes. The reasons behind these interesting results are uncertain and 
need to be further investigated.

Two crash circumstances (rail equipment struck vehicle and vehicle struck rail equipment) 
were considered. The crash circumstance under which vehicle struck rail equipment was considered 
a reference (i.e., base) for comparison. As shown in Table 2, when rail equipment struck vehicle, 
crash severity was more likely to be fatal. On the other hand, this crash circumstance is less likely to 
result in injury crashes. Such results are expected and come as no surprise because fatal crashes are 
believed to be more likely when rail equipment struck vehicle.

Compared with low temperature (less than 10oC [50oF]), vehicle-rail crashes occurring at higher 
temperatures (greater than 27oC [80oF]) had increased the probability of injury and fatal crashes. 
As presented in Table 3, the marginal effect result also clearly indicates that higher temperature 
increases the chance of injury and fatal crashes while decreasing no injury crashes.

Regarding weather condition, snow and foggy conditions were found to be statistically 
significant. As presented in Table 2, snowy weather conditions were less likely to result in injury 
and fatal crashes as compared with clear weather conditions. Result also shows that foggy weather 
conditions were more likely to result in injury crashes but less likely to result in fatal crashes. 
This might suggest that, as compared with clear weather conditions, people are more likely to 
drive vehicles with caution under severe weather conditions (such as snow and foggy weather) and 
therefore the chance of resulting in more severe crashes is reduced.

Five different types of development area types were considered in this study. Compared 
with open space development areas, HRGCs located in commercial, residential, industrial, and 
institutional areas were less likely to result in injury and fatal crashes and they were all found to be 
statistically significant. The marginal effect results in Table 3 also confirm that HRGCs located in 
these development areas decrease the probability of injury and fatal crashes while the probability of 
no injury crashes increases. This might suggest that compared with open space development areas, 
vehicles are more likely to be driven with caution and therefore the probability of resulting in more 
severe crashes is reduced.

Various types of HRGC surfaces were investigated in this study. A timber crossing surface was 
considered a reference to which other crossing surface types are compared. As shown in Table 2, 
vehicle-rail crashes occurring on asphalt, asphalt and flange, and unconsolidated crossing surfaces 
were found to be less likely to result in injury and fatal crashes, and all these variables were found 
to be statistically significant. On the other hand, concrete and rubber crossing surface types were 
also found to be statistically significant; however, crashes occurring on such surfaces were more 
likely to be injury and fatal crashes. Similar results can also be seen in Table 3. This might indicate 
that compared with timber crossing surfaces, people are less likely to drive vehicles with caution on 
concrete surfaces and therefore the chance of resulting in more severe crashes is higher.

The Average Annual Daily Traffic (AADT) was also considered in order to investigate the 
effect of traffic volume on crash severity. The AADT was classified into four categories. The three 
AADT categories (i.e., AADT of 10,000-20,000, 20,000-30,000, and >30,000) were found to be 
statistically significant and they were less likely to result in injury and fatal crashes compared with 
category one (i.e., AADT less than 10,000). This probably suggests that compared with low traffic 
volume conditions, people are more likely to drive vehicles with caution under high traffic volume 
conditions and as a result, the chance of resulting in more severe crashes is reduced.

Finally, vehicle driver characteristics such as age and gender were considered in the study as 
explanatory variables. With respect to driver gender, male drivers were more likely to be involved in 
injury and fatal crashes as compared with female drivers and the variable was found to be statistically 
significant. The age of vehicle drivers is grouped into three categories. Vehicle driver age below 25 
was considered a reference for comparison purpose. As shown in Table 2, driver age of 25-60 and 
above 60 years had higher probability of being involved in injury and fatal crashes. As shown in 
Table 3, the marginal effects confirm that vehicle drivers age 25-60 and above 60 years increase the 
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probability of being involved in injury crashes while decreasing the probability of being involved 
in fatal and no injury crashes.

In addition to the model results of intercepts and slope coefficients for serious injury and fatality, 
the model can be interpreted by using the odds ratio, which is the exponential of parameter estimates 
obtained from the analysis. For example, the estimated coefficient for vehicle speed category three 
(i.e., >72 km/hour [>45 mph]) is 0.9211 and hence the relative effect of this speed category versus 
vehicle speed category one (i.e., <40 km/hour [<25 mph]) is =2.512. This indicates that the odds 
of vehicle crash severity being injury is 2.512 times higher if the speed of the vehicle is category 
three compared with that of vehicle speed category one. Similarly, the parameter estimate of vehicle 
driver age above 60 years, considering driver age below 25 years as a reference, is found to be 
0.2706. So, the  relative effect of drivers age above 60 years to age below 25 years on injury crashes 
is determined as =1.311. This indicates that the odds of injury crash severity versus no injury crashes 
are 1.311 times higher for drivers age above 60 years compared with those below 25 years. The odds 
ratio results of the rest of variables can also be interpreted in a similar fashion.

The probabilities of the three severity crashes (fatality, injury and no injury) can be predicted by 
using the following three eqs. (10-12).

(10)      		

(11)      		

(12)      		

The probability of the three different severity levels of vehicle-rail crashes are determined based 
on the parameters estimated for the indicator variables in the models as shown in eqs. (8-9) and the 
probability eqs. (10-12) shown above. Accordingly, the predicted average probability of fatal, injury, 
and no injury severity levels are 0.072, 0.299, and 0.629, respectively by using these equations. And 
the observed crash severity from the original data (as discussed and shown in the “Data Assembly 
and Analysis” section) was 0.069, 0.334, and 0.597 for fatality, injury, and no injury, respectively. 
Also as shown in Table 2, the ρ2 determined for the model is 0.011, which indicates the model has 
some improvement over the naïve model (model without covariates).

CONCLUSION

Highway vehicle crash severity levels at HRGCs were modeled using MNLM in this paper. The 
three vehicle crash severity levels (fatality, injury, and no injury) were considered as dependent 
variables. Vehicle and vehicle user characteristics, environmental factors, type of development area, 
highway-rail crossing characteristics, highway traffic characteristics, vehicle speed, and train speed 
were the explanatory variables used in predicting crash severity levels. The analysis was conducted 
using SAS PROC LOGISTICS procedure. In order to retain some of the variables, those within 90% 
confidence level were considered statistically significant. Some of the variables were found to be 
statistically significant even at 95% confidence level.

As discussed in the paper, results indicate that as vehicle and/or train speeds increase, the 
chance of being involved in injury and fatal crashes at HRGCs also increases. Hence, reducing 
train and vehicle speeds at HRGCs will certainly minimize the chance of resulting in more severe 
crashes. It is noted that the majority of crashes occurred when rail equipment struck vehicles. In 
particular, this type of accident increases the chance of resulting in fatal crashes. As for vehicle 
types, truck-trailer vehicles are observed to decrease the probability of fatal crashes while pickup 
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trucks increase such chances. It is also observed that male drivers above 25 years are more likely 
to be involved in injury and fatal crashes. Moreover, crashes occurring at higher temperatures are 
more likely to be injury and fatal compared with those occurring at low temperatures. Also, higher 
traffic volume (i.e., higher AADT) decreases the probability of resulting in injury and fatal crashes. 
Results seem to suggest that people are more likely to drive vehicles with caution at commercial/
residential/industrial/institutional areas as opposed to open space development areas, under severe 
weather conditions (such as snow and foggy weather) compared with clear weather conditions, on 
non-concrete surfaces as opposed to concrete surfaces, and as a result, the chances of being involved 
in more severe crashes are reduced. In all, educating and equipping drivers with good driving habits 
(such as reducing speeds or stopping their vehicle completely regardless of a train being present 
or not) at HRGCs and short-term law enforcement actions, can potentially minimize the chance of 
resulting in more severe vehicle crashes at HRGCs.

Future research may be directed toward modeling the severity level at HRGCs using ordered 
logit, which can be modeled by the proportional odds models (McCullagh 1980) along with the 
conduct of a score test for proportional odds assumption (Strokes et al. 2000). Furthermore, future 
direction will be on developing a simultaneous equations model of crash frequency by severity 
level at HRGCs since this will improve the efficiency of uncovering the influential factors. Last but 
not least, the reasoning based on the empirical study results will need to be fully supported by field 
investigation evidences in the near future.
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