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Investigating Mixed Logit Analysis of Critical 
Headways at a Single-Lane Instrumented 
Roundabout

by Alex Hainen

This paper examines 29,403 entering vehicles that rejected two or more headways for a total of 
69,123 rejected headways. A detailed series of temporal parameters was established and used to 
estimate a mixed binary logit model and understand rejection/acceptance decisions. This technique 
allows for the parameter estimates to vary across the population and across the set of decisions 
that drivers made and suggests that drivers may modify their critical headway as they wait at 
the yield bar. The results from this paper indicate that future consideration of capacity using a 
dynamic critical headway could be useful in modeling and capacity estimation.

INTRODUCTION

Roundabouts have gained much popularity and usage in the United States over the past decade. 
As designers and planners start to consider them as an alternative, much effort has been spent in 
capacity analysis during the design phase. One popular analysis technique is to use microsimulation. 
Microsimulation involves running a virtual model of the intersection or facility under user defined 
conditions and recording the observed performance. The critical headway is a very important 
setting for microsimulation. Critical headway is the minimum amount of time between circulating 
vehicles that a driver entering the roundabout will choose to proceed.

Critical headway at roundabouts has been studied for decades. Some of the earliest work on 
the subject was conducted in the 1970s in the UK and has evolved over time (Kimber 1980). Other 
work over time has included studies by Troutbeck (1992), Wu (2012), Raff and Hart (1950), Siegloch 
(1973), Polus et al. (2005), Pimentel et al. (2013), and Gazzari et al. (2012). One of the popular 
methods that emerged was the logit analysis, which predicts the probability of accepting a headway 
as Pa = exp(Ua) / (1 + exp(Ua)) where Ua is a utility function based on the circulating headway and 
the waiting time at the yield bar (Hewitt 1983). These equations can be calibrated in the field and 
the critical headway is then identified as the headway that is acceptable to half the drivers. In other 
words, the critical gap is identified when Pa = Pr  (where Pr is the probability of rejecting a headway, 
or Pr = 1– Pa). This model can also be extended with a more robust mixing formulation discussed 
further in the methodology section.

Another popular critical headway estimation technique is the maximum likelihood approach 
(Tian, et al. 1999). This method identifies each driver’s critical headway by comparing the largest 
rejected headway and the accepted headway by assuming a probabilistic distribution. Troutbeck 
(1992), Brilon et al. (1999), and Weinert (2000) have studied the impact of different distributions 
in their works. Another analysis by Wu (known as equilibrium of probabilities) is also used to 
estimate the critical headway. The equilibrium of probabilities uses a macroscopic model that 
doesn’t need an a priori assumption about the distribution as required in the maximum likelihood 
method. Each of these techniques have numerous papers by their authors.

The fundamental challenge with the critical headway is that it cannot be directly measured and 
is, instead, a latent value that must be estimated using various techniques. The critical headway 
has been traditionally estimated as a fixed value and does not accommodate change by driver or by 
headway sequence. In other words, the critical headway for drivers does not change as drivers wait 
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at the yield bar to enter the roundabout even though the drivers are likely assembling short-term 
observations to calibrate their own critical headway. However, drivers waiting at the yield bar may 
be subject to several sequential headways where they will learn and change their decision making 
on accepting or rejecting a headway. To accommodate this phenomenon, mixed logit analysis is 
used in this paper to understand additional factors and reveal information about the driver decision- 
making process.

OBJECTIVE

The objective of this paper is to understand how the critical headway may be changing as drivers wait 
to enter a roundabout and variations across the sample population. As drivers wait at the yield line, 
each sequential headway is an opportunity for drivers to calibrate themselves to current traffic flow. 
This paper examines how drivers are using observations and other pieces of information to adjust 
their critical gap. Technological advances allowed a single-lane roundabout to be instrumented 
and observe a large sample of nearly 100,000 acceptance and rejection decisions of headways over 
six weeks. Mixed binary logit analysis is used to further support the notion that critical headways 
change as drivers wait at the yield bar. This analysis will help shape future estimation of critical 
headways using contemporary modeling techniques. The characteristics identified in the model 
can be considered by researchers within a simulation environment to enhance microsimulation 
analysis at roundabouts.

DATA COLLECTION

The single-lane roundabout at W 106th St, Spring Mill Rd in Carmel, IN, was instrumented with 12 
wireless magnetometers to provide vehicle detection at the entrance, exit, and circulating path of 
each of the four approaches (Hainen, et al. 2013). This roundabout has been in operation for over 
10 years and the driver population is considered experienced with roundabouts (Carmel, IN, is a 
community with over 70 roundabouts). The sensor layout is shown in Figure 1, where the two-letter 
label indicates (1) the approach and (2) the sensor position (for example, “We” indicates the west 
approach entering sensor). Sensors were field-located and installed between the wheel tracks of the 
vehicle paths (redundant sensors were placed wide outside of the wheel tracks, but not necessarily 
based upon matching data with the primary sensors more than 99.5% of the time). Detection 
records were recorded over six weeks from mid- July to late August, 2012. The roundabout is in 
a residential area and video data for the first two weeks were analyzed to confirm minimal truck 
traffic (much less than 1%). Due to the expensive equipment and complex installation, this was the 
only roundabout instrumented for this study.

The wireless magnetometers work similarly in logical operation to a traditional inductive loop 
detector. When a vehicle occupies the detector, an “on” state is noted and logged to the nearest 
millisecond. When the vehicle leaves the detector, an “off” state is noted and also logged to the 
nearest millisecond. (There are a few other detector diagnostic statuses in the data, but the “on” and 
“off” records are all that are required for the analysis in this study.) Figure 2 shows an actual field-
documented and recorded example where vehicle E1 is waiting to enter the roundabout. Vehicle 
E1 rejected five headways (including the arrival headway) and accepted on the sixth headway. 
This indicates that a headway of 3.77 seconds was larger than the critical headway for driver E1 
where the driver determined there was enough room to enter the roundabout. Figure 3 shows 
this particular example as synthesized with video data. It is important to note that the video was 
not used for data reduction as in many past studies and that the video is only used to confirm the 
detector data. The sample sensor data are shown in Table 1. These data are then reduced to a series 
of headways and decisions.
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Figure 1: Sensor Layout at the Roundabout at Spring Mill Rd @ W 106th St

Figure 2: Example of a Vehicle Waiting to Enter the Roundabout
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One important note for the examples in Figure 2 and Figure 3 is that the arrival time was 
also likely larger than the critical headway. For this particular case, the driver arrived at the yield 
bar at nearly the same time as the first circulating vehicle (C1 in Figure 2) arrived and thus the 
entering vehicle E1 had to yield. This dynamic of arriving vehicles and circulating vehicles is 
dependent on many parameters. Since the aim of this paper is to evaluate how critical headway is 
changing over time, the final reduced set of data used in the models only considers vehicles that, at 
a minimum, rejected headway #2. This ensures that each entering vehicle came to a stop and that 
drivers assessed a minimum of two headways before accepting. Since the first rejected headway 
upon arrival is unbounded, it was not used in the data set. The second rejected headways for these 
vehicles were used along with subsequent rejected headways to build the final data set.

Figure 3: Video Observation of Example Vehicle Waiting to Enter the Roundabout
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Table 1: Sample Sensor Data from Example Vehicle Waiting to Enter the Roundabout

Assembly of Records for Modeling

The raw sensor data were turned into a series of variables that could be used for modeling. An 
example of the reduced data for vehicle E1 is shown in Figure 4. The upper square wave shows 
the ON/OFF status for the entering sensor and the lower square wave shows the ON/OFF status 
for the circulating sensor. By referencing key times, a series of temporal variables is established 
to generate a series of records for each rejected/accepted headway. Headway was calculated as the 
time from the “on” event of vehicle n to the “on” event of vehicle n+1 for the circulating sensors 
(items “iv” to “ix” in Figure 4). The delay of the entering vehicle was calculated from the “on” 
time to the “off” time of the entering sensor for each entering vehicle. By pairing both the entering 
and circulating records, the number of headways each entering vehicle rejected was observed 
along with the magnitude of each headway. From this set, each headway could be used to build a 
cumulative average, minimum, and maximum rejected headways. These are important variables 
that summarize the decisions that a driver made while waiting.

SENSOR STATUS VEH-ID CODE TSTAMP
Entering ON 0 E01 7/12/2012 08:23:00.86
Entering OFF 0 E00 7/12/2012 08:23:01.47

Circulating ON 1 C11 7/12/2012 08:23:02.78
Circulating OFF 1 C10 7/12/2012 08:23:03.63

Entering ON 1 E11 7/12/2012 08:23:09.11
Circulating ON 2 C21 7/12/2012 08:23:09.72
Circulating OFF 2 C20 7/12/2012 08:23:10.80
Circulating ON 3 C31 7/12/2012 08:23:12.48
Circulating OFF 3 C30 7/12/2012 08:23:13.34
Circulating ON 4 C41 7/12/2012 08:23:14.67
Circulating OFF 4 C40 7/12/2012 08:23:15.74
Circulating ON 5 C51 7/12/2012 08:23:16.02
Circulating OFF 5 C50 7/12/2012 08:23:16.82
Circulating ON 6 C61 7/12/2012 08:23:18.26
Circulating OFF 6 C60 7/12/2012 08:23:19.22

Entering OFF 1 E10 7/12/2012 08:23:19.91
Entering ON 2 E21 7/12/2012 08:23:20.18

Circulating ON 7 C71 7/12/2012 08:23:22.03
Circulating OFF 7 C70 7/12/2012 08:23:23.24

Entering OFF 2 E20 7/12/2012 08:23:24.06
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Figure 4: Visualization of Sensor Data and Temporal Variables Used for Modeling

Other key temporal variables include the position of the entering vehicle in time relative to both 
of the circulating vehicles for the arrival headway (items “ii” and “iii” in Figure 4) and both of the 
circulating vehicles for the acceptance headway (items “x” and “xi” in Figure 4). Lastly, temporal 
variables describing the entering vehicle E1 position relative to leading and following entering 
vehicles were compiled. Item “i” in Figure 4 shows that substantial time had passed between the 
previous entering lead vehicles E0 and E1. This indicates that vehicle E1 was not waiting in a 
queue (this is important since queued vehicles may be pre-calibrated by observing headways of 
the leading entering vehicle as they wait in the queue). Also, item “xii” in Figure 4 shows the time 
between vehicle E1 entering the roundabout and the next entering vehicle arriving at the yield bar. 
This information indicates that, in this example, E1 had vehicle(s) queued behind waiting. This 
was hypothesized to add to driver distraction (realizing that vehicles were pulling up behind) and 
also driver pressure as they felt more urgent to accept a headway on behalf of entering for queued 
vehicles. This move up time is discussed in detail in NCHRP Report 572 (2001).

The final record set is summarized in Table 2. Each headway is a record and includes temporal 
information from some of the other headways experienced by the driver for a set. These data 
were also combined with entering, exiting, and circulating volumetric information, which is also 
pertinent information that drivers will leverage while making rejection/acceptance decisions.
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Table 2: Assembly of Data Records for Example Vehicle Waiting to Enter the Roundabout

* Small Roman numerals (i., ii., ...) correspond to figures. Not all variables available for modeling.

ANALYSIS AND RESULTS

Starting with empirical observations, stock plots based on the field-measured data for 
both the accepted and rejected headways are shown by headway sequence number (Figure 5). Each 
vertical bar represents the spread of the 25th and the 75th percentile headways, and the diamond 
marker represents the median headway. These figures provide some very intuitive evidence that 
the headways, by sequence, decrease as drivers wait. Since headway #2 was only considered for 
vehicles that rejected a minimum of two headways, the headways sequence starts on the third 
headway.

Decreasing acceptance headways (Figure 5a) means that drivers are willing to lower their 
critical headways a bit after rejecting several headways. This is also dependent on prevailing 
conditions at the roundabout where, under lighter conditions, drivers are able to accept larger 
headways in the earlier sequences, whereas drivers will feel forced to accept a much smaller 
headway during busy periods as they wait (this was clearly observed in the raw detector data and 
thus reflected in the model estimation).

With regards to the rejected headway decisions, the average rejected headway as drivers wait 
through a sequence of headways also decreases as sequence number increases (Figure 5b). This 
means that drivers are more discerning when they adjust their critical headways and only the 
tightest headways (headways that are now known to the driver to be extremely close to the critical 
headway) are rejected later on. This first-order magnitude, empirical analysis demonstrates that 
both the accepted and rejected headways are decreasing as the headway sequence increases.
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E1 2 2.76 0 7.64 6.32 0.62 6.94 -- -- -- 3.37 3.77 0.92 2.85 0.27 

E1 3 2.19 0 7.64 6.32 0.62 6.94 2.76 2.76 2.76 5.56 3.77 0.92 2.85 0.27 

E1 4 1.35 0 7.64 6.32 0.62 6.94 2.47 2.76 2.19 6.89 3.77 0.92 2.85 0.27 

E1 5 2.24 0 7.64 6.32 0.62 6.94 2.10 2.76 1.35 9.15 3.77 0.92 2.85 0.27 

E1 6 3.77 1 7.64 6.32 0.62 6.94 2.14 2.76 1.35 10.06 3.77 0.92 2.85 0.27 
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Figure 5: Empirical Stock Chart Distributions (Quartiles 1, 2, and 3) of Headways by 
Headway Sequence (with Frequency Table)

a)  Decreasing Mean and Interquartile Range of Accepted Headways 

b)  Decreasing Mean and Interquartile Range of Rejected Headways

c)  Count of Rejected and Accepted Headways in the Final Dataset

As previously mentioned, the critical headway is recognized to be a latent value that cannot 
be directly observed. Turning again to Figure 5, the difference in the median accepted headway 
for headway sequence number 3 (9.23 seconds in Figure 5a) and the median rejected headway for 
headway sequence number 3 (2.18 seconds in Figure 5b) encompasses the actual critical headway. 
As the headway sequence increases, the difference between the median accepted headway and 
median rejected headway decreases. For example, the median accepted headway for headway 
sequence number 15 (5.81 seconds in Figure 5a) and the median rejected headway for headway 
sequence number 15 (1.90 seconds in Figure 5b) start to converge around the traditionally estimated 
critical headway value of 3.5 to 4.5 seconds. Traditional estimation techniques from Troutbeck 
(1992) and Wu (2012) may be used to estimate the critical headway, but this dataset lends itself to 
further analysis for understanding the driver decision-making process.

Headway 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15 

Reject 15,152 7,568 4,016 2,267 1,376 886 608 424 313 230 178 136 102 77 

Accept N/A 7,584 3,237 1,586 809 439 252 156 104 71 49 37 31 88 



91

JTRF Volume 55 No. 3, Fall 2016

Mixed Binary Logit Analysis

In past estimation approaches by other researchers, binary logit analysis was an early technique used 
to estimate the critical headway. A binary logit model uses parameters to predict the probability 
of a driver making a discrete choice to either accept or reject a headway. Again, a utility function 
can be defined as:

(1)  Un = βiXin + εn

where Xin is a vector of data that characterizes the circumstances of a particular headway decision 
making instance.  βi is a vector of estimable parameters and  is an error term. The estimation of βi 
is done using maximum likelihood (Washington, Karlaftis, and Mannering 2011). The multinomial 
logit model (generalized formulation of the binary logit model) is based on McFadden’s assumption 
that the error term εn in the utility function is distributed as a type 1 generalized extreme value, 
sometimes referred to as the Gumbel distribution (McFadden and Train 2000). The formula for a 
generalized multinomial logit then becomes:

(2)  

For the reduced binary decision case where only two choices are available (to accept headway or 
reject a headway), the model can be reduced to the binary logit form shown below. The equation for 
the binary logit shown below also includes a mixing function:

(3)

Where Pin is the mixed logit probability, which is a weighted average about the density function  
f(β|φ)dβ over varying parameter estimates (McFadden and Train 2000). For the mixing function, 
the β is the mean and the φ is the standard deviation of the parameter distribution. This mixing 
function allows the parameter estimates to vary over the sample data set instead of being fixed 
for all samples. A normal distribution was used for estimation in this analysis, but a variety of 
distributions could be used as the analyst determines is appropriate. Model estimation based on 
maximum likelihood was conducted using Halton draws or quasi-random selection for generating 
search space efficiently (Halton 1960).

Mixed Binary Logit Results

The mixed binary logit model was estimated using simulation-based maximum likelihood, and 
the results are shown in Table 3. Statistically significant variables were added based on the results 
of models that used different subsets of the variables. While models were estimated using the 
full 6-week dataset, a reduced dataset of 47,975 records was used to estimate the distributions of 
the random parameters due to software limitations (the difference in the distribution of variables 
was statistically insignificant, so consistent parameter estimates hold true). Estimates for fixed 
parameters are shown along with their t-statistics. It should be noted that large t-statistics are a 
function of large sample size (which is also the reason that all parameter estimates are significant 
at the α=1% level). For the random parameters, the means and standard deviations of the mixing 
distributions are included. The elasticities (and pseudo-elasticities for indicator variables) are 
shown in Table 4. These indicate the change in the probability of accepting a headway for a 1% 
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change (or one-unit change for indicator variables) in the independent variables (these are average 
values and will vary for the random parameters across the population). Variables were added and 
removed in a forward-selection fashion.

Table 3: Mixed Binary Logit Estimation Results for Headway Acceptance

Variable

Parameter 
estimate 

(Standard 
Deviation) t-Statistic

Constant -19.44 -47.84

Headway (seconds) 3.16 (1.61) 53.43 (52.12)

Headway sequence number 
(number of rejected headways – 1)

0.35 23.13

Cumulative yield bar delay greater than 10-seconds 
(1=true, 0=otherwise)

-2.77 -27.45

Previous one-minute circulating volume  in front of the 
approach

0.035 4.82

Previous one-minute entering volume for the entire 
roundabout  

0.029 5.83

Previous one-minute circulating volume at the upstream 
approach  

0.039 4.82

Cumulative average rejected headway 
 (from headway 2 to headwayn-1 )

1.59 43.97

Time (in seconds) between arriving at the yield bar and 
the previous entering vehicle  leaving the yield bar

-0.028 -11.63

Time (in seconds) between leaving the yield bar and the 
next entering vehicle  occupying the yield bar

0.020 6.34

Time (in seconds) between the entering vehicle arriving at the 
yield bar and the first circulating vehicle passing in front 
of the approach  

-0.021 (0.36) -8.01 (15.19)

PM peak-hour indicator (1=true, 0=otherwise) 0.64 7.80

Weekday (Monday-Friday) indicator (1=true, 0=otherwise) 0.38 (0.18) 2.10 (4.31)

Sample size, n (reduced set for distribution estimation) 47,975

Log-likelihood -7990.06

Turning to variable analysis, a positive parameter estimate indicates that drivers are less 
likely to reject a headway, and a negative sign suggests that a driver is more likely to reject a 
headway. The most pertinent information drivers use during the accept/reject decision-making 
process is (1) the size of the headway under consideration, (2) how many headways have been 
rejected, and (3) how long the driver has been waiting. The parameter for headway (in seconds) 
intuitively indicates that larger headways are more likely to be accepted. The random parameter 
aspect suggests that there are many other factors that will change the way a given headway looks 
to drivers depending on how long they’ve been waiting, how many headways they’ve rejected, and 
many other factors further discussed in the model. The fact that this variable has a distribution 
strongly indicates that a dynamic process of adjusting a driver’s critical headway is evident, and the 
additional model variables help to identify some of these mechanisms. For item (2), as the number 
of rejected headways increases, the probability of accepting a headway increases. This is intuitive 
as drivers perceive each rejection as a unit that cumulatively increases the probability of accepting 
a headway. Also, drivers will be able to leverage the information from each rejected headway to 
better calibrate themselves where they’ll be more likely to accept a headway. Finally, for item (3), 
sensitivity analysis was used to identify that a binary indicator variable of waiting more than 10 
seconds at the yield bar was found to be highly significant for drivers where they will be less likely 
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to accept a given headway. This may be due to conservative drivers who are willing to wait longer 
for an acceptable headway, or perhaps drivers who may have had sufficient time to identify a more 
acceptable headway further upstream where they desire to wait for a desirable headway.

Table 4: Elasticities for Mixed Binary Logit Model of Headway Acceptance
Variable Elasticity

Headway (seconds) 0.0387

Headway sequence number 
(number of rejected headways – 1)

0.00433

Cumulative yield bar delay greater than 10-seconds 
(1=true, 0=otherwise)

-0.0339

Previous one-minute circulating volume  in front of the approach 0.00043

Previous one-minute entering volume for the entire roundabout  0.00036

Previous one-minute circulating volume at the upstream approach  0.00048

Cumulative average rejected headway 
 (from headway 2 to headwayn-1)

0.0195

Time (in seconds) between arriving at the yield bar and 
the previous entering vehicle  leaving the yield bar

-0.00034

Time (in seconds) between leaving the yield bar and the 
next entering vehicle  occupying the yield bar

0.00024

Time (in seconds) between the entering vehicle arriving at the yield 
bar and the first circulating vehicle passing in front of the approach  

-0.00262

PM peak-hour indicator (1=true, 0=otherwise) 0.00783

Weekday (Monday-Friday) indicator (1=true, 0=otherwise) 0.00467

Looking at volumes, when the previous one-minute circulating volume in front of the approach 
is higher, drivers are more likely accept a headway. During heavy traffic conditions, drivers likely 
feel added stress about how busy the roundabout is, and increased traffic causes drivers to be 
more observant and discerning where they will be more likely to accept a headway that could be 
questionable close to their critical headway.

The previous one-minute entering volume for the entire roundabout is another variable that 
contributes to the probability of a driver accepting a headway. The higher the previous one-minute 
total entering volume, the more likely a driver will accept a headway. There are a few mechanisms 
driving this. First, a higher previous entering volume at the roundabout indicates an increased 
ability of vehicles in general to enter the roundabout. This is somewhat tricky because more 
entering vehicles at other approaches can also become circulating vehicles in front of the approach 
under consideration. However, relatively higher upstream circulating volumes can be useful to help 
drivers calibrate their perception of headways as discussed in the previous paragraph and in the 
next paragraph.

The variable for previous one-minute circulating volume at the upstream approach suggests 
that higher upstream circulating volume increases the probability of accepting a headway. (This is 
in contrast to higher upstream entering volume, which was not significant). The difference is that 
drivers waiting to enter the roundabout are able to better observe the circulating headways further 
out and have a longer time to observe the headway as they are presented with the option to accept. 
Also, it may be easier to gauge an exiting decision of a circulating vehicle.

Another very important finding is that a higher cumulative average rejected headway increases 
the probability of accepting a headway. This suggests that if drivers have accumulated a relatively 
large cumulative average rejected headway, they are more likely to recognize headways where they 
could have entered and thus will be more prone to accept the current headway under consideration. 
This makes sense from a driver perspective where rejecting a few large (and possibly acceptable) 
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headways will cause the driver to be more likely to accept a headway as they calibrate and lower 
their critical headway.

The variables for the time between two entering vehicles at a given approach are also important. 
The more time (in seconds) between arriving at the yield bar and the previous entering vehicle leaving 
the yield bar, the less likely the probability of accepting a headway. This shows that drivers waiting 
in a queue tend to observe the headways of the car they’re waiting behind. This is an opportunity for 
driver’s to calibrate their headway observations before they’re waiting at the yield bar. If the time is 
large (indicating that the driver wasn’t in a queue), then they won’t have information ahead of time 
(this was the case shown in Figure 4 with vehicle E0 preceding vehicle E1 with a relatively large 
amount of time, where E1 is unlikely to have spent time waiting in queue behind E0).

A second variable relating sequential entering vehicles is the time (in seconds) between leaving 
the yield bar and the next entering vehicle occupying the yield bar (or move-up time according to 
NCHRP 572). The more time between the next following entering car, the more likely that a driver 
will accept a headway. This information shouldn’t be used directly for analysis since this can’t 
be known at a given headway n, but it can be used as a proxy for the probability that the entering 
vehicle was in front of a queue and had entering vehicles queued behind (an example is shown in 
Figure 4 with E2 following very closely behind E1). Such a queue could cause the driver to feel 
more pressure and distraction than if there was no queue.

Another variable that is an important spatial relationship is the time (in seconds) between the 
entering vehicle arriving at the yield bar and the first circulating vehicle passing in front of the 
approach (item “iii” in Figure 4). If there is more time between arrival at the yield bar and the first 
circulating vehicle passing in front of the approach, this will be seen by the driver as an instance 
where they might have been able to enter. This is really their first frame of reference for observing 
time and headways at a roundabout, so it’s important for the initial adjustment of a critical headway, 
and the magnitude will depend on each vehicle’s relative positioning.

Finally, two time of day/week variables were found to be significant. An indicator for the PM 
peak-hour was estimated and shows that drivers are more likely to accept a given headway during 
these conditions. While at first this may seem only attributable to heavier volumes, most of the 
decision-making component related to volumes is captured in other variables and this PM peak-hour 
may be capturing other driver behavior during a stressful period. Also, a binary indicator variable 
for weekdays was found to be significant and, on average, increased the probability of accepting 
a headway. This is likely due to heavier traffic and a higher value of time during the work week 
(Monday-Friday) period where drivers are less likely to accept a headway during the weekend 
period (or rather stated that drivers tend to have a higher critical headway).

CONCLUSIONS

This paper provides very important insight about the critical headway and the decision making 
process drivers face when accepting or rejecting headways at a single lane roundabout. The data 
collection process, a major advancement over past studies, used video collection over a limited time 
frame. This data collection process observed 29,403 vehicles 24-hours a day over six weeks.
1.	 Based on empirical observations and traditional critical headway estimation techniques, there is 

evidence that the critical headway changes across drivers and headways as a driver waits at the 
yield bar. This is important information that can be used to enhance existing models.

2.	 The median accepted headway shows a consistent trend of decreasing over time. This suggests 
that drivers’ critical headway value is changing based on each additional rejected headway they 
sit through. The median rejected headways confirms that drivers eventually reduce their critical 
gap and are less likely to reject longer headways as they wait.
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3.	 Mixed binary logit analysis was used to assess different variables that affect drivers’ decisions. 
Each of these variables could be included in microsimulation to better predict the acceptance/
rejection decision for headways.

4.	 By using a dynamic critical headway, microsimulation and other modeling approaches could 
cause capacity analysis to be improved. Using a more accurate estimate of critical headway 
over time spent waiting at the yield bar has implications of additional capacity at roundabouts. 
Drivers could be modeled as accepting a headway earlier in the circulating stream sequence 
based on lowered critical headways.
The discussions and conclusions identified by the model are important findings for traffic en-

gineers. Future work will include incorporating these results into calibration of a microsimulation 
model and also exploring other yield situations where similar technology and methodology can be 
used. In particular, multilane roundabouts should be examined but will require additional data re-
duction techniques from the sensors.
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