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The Impacts of Emergency Vehicle Signal
Preemption on Urban Traffic Speed
by Hualiang (Harry) Teng, Valerian Kwigizile, Gang Xie, Mohamed Kaseko, 
 and A. Reed Gibby 

We used GPS data from paratransit vehicles to evaluate the impact of emergency vehicles on urban 
traffic speeds. The results indicate that speed variance is significantly higher during emergency pre-
emption and the mean speeds of traffic flowing in the same direction as the emergency vehicle and 
on crossing streets are lower during preemption than during normal conditions. Regression results 
indicate that traffic on major arterials and traffic in the opposite direction of the emergency vehicle 
tend to have higher speed during signal preemption. Signal preemption during peak periods and 
duration of preemption had a significant negative impact on traffic speeds. Also, the transition time 
has a negative impact on traffic speeds. The authors recommend further research on how to optimize 
(minimize) the preemption duration as well as transition time. Also, the impact of median type and 
number of lanes should be evaluated.

INTRODUCTION

Emergency vehicle signal preemption interrupts regular traffic signal operations to allow emergency 
vehicles to pass through intersections safely with minimum delay. Usually, a “signal” from an 
emergency vehicle is sent to a detector device that notifies the traffic signal controller so that signal 
display and timing are altered in favor of the emergency vehicle.  When the signal display facing 
the emergency vehicle is red, to satisfy safety requirements for vehicles and pedestrians, the green 
signal display for the crossing street traffic will continue long enough to satisfy the timing needs for 
the cross street vehicles or pedestrians.  Then the traffic signal changes so the emergency vehicle 
receives a green indication before entering the intersection. If the signal facing the emergency 
vehicle is green, it will be extended until the emergency vehicle enters the intersection. After the 
passage of the emergency vehicle, the traffic signal controller returns to normal operation.  If the 
traffic signal is coordinated with other signals, it will operate through a transition, when signal 
phasing and timing transition to normal operation. After this transition period, the traffic signals 
function according to the normal traffic signal coordination and timing plan.

It has been observed that emergency vehicle drivers adapt to various traffic operating conditions 
differently. Similarly, drivers in general alter their driving behavior correspondingly. During peak 
periods, emergency vehicles sometimes are caught in the heavy traffic congestion and cannot reach 
a downstream intersection (next intersection in the direction of the emergency vehicle) with the 
green time provided. In this situation, emergency vehicles will most likely need to cross the median 
and enter an opposing lane of traffic in order to bypass the congested roadway segment. During the 
off-peak period, when traffic is lighter, the traffic approaching the downstream intersection usually 
maneuvers out of the path of emergency vehicles. Some vehicles may trail the emergency vehicle 
and pass through the downstream intersection at high speeds. The vehicles moving in the opposite 
direction yielding to an emergency vehicle often miss the green phase, experiencing additional 
delay. Those vehicles moving in the same direction as the emergency vehicle and yielding to it 
while approaching the preempted traffic signal also experience delay. The traffic on the cross street 
will suffer a reduced green time or a longer red time. However, the total daily approach delay will 
generally not be significant unless the number of preemptions becomes excessive.

A significant amount of time may be required for traffic signals to transition back to normal 
operations after a preemption. If there are numerous preemptions per day at an intersection, the 
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opportunity for normal operation could be small. For example, in the Las Vegas Urbanized Area, 
it was reported that some traffic signals had as many as 400 emergency preemptions in a week 
(Kaseko and Teng 2005). Considering the additional time for the transition needed for traffic signals 
recovering back to coordination from preemption, traffic signals at these intersections may have a 
small chance to operate regularly. Thus, there is a need to investigate the conditions under which 
preemptions caused significant traffic delay. The results from such studies can be used by traffic 
engineers for establishing signal preemption strategies.

Several studies have been conducted on the impact of traffic signal preemption for emergency 
vehicles. Different forms of traffic simulation models (microscopic, which simulates single vehicle-
driver unit dynamics; or macroscopic, which simulates a group of vehicles) were employed in 
these studies. To some extent, the simulation models used in these studies may not fully model 
the driving behavior of emergency vehicle operators, such as using the travel lanes of opposite 
direction. They may not model the reaction of the general traffic for giving the right of way to 
emergency vehicles. Also, there have been conflicting findings reported from studies employing 
simulation. The methodology employed in this study uses “real” data that represent driver behavior 
and reactions to the presence of emergency vehicles.

The study presented in this paper evaluates the impact of signal preemptions on traffic 
operations. Instead of using simulation, it utilizes the data from a global positioning system (GPS) 
installed on para-transit vehicles that are operated by the Regional Transportation Commission in 
the Las Vegas area of Southern Nevada.  Typically, these vehicles are vans and travel to locations 
in the valley to provide service to eligible customers. Advanced reservations are required. Para-
transit vehicles involve fewer stops than conventional transit buses and were therefore assumed 
to have travel patterns and operating characteristics similar to regular traffic, particularly from the 
perspective of responding to emergency vehicles. In this study, the GPS data were processed to 
derive speed and travel time data for the roadway segments where the para-transit vehicles traveled. 
Also, the signal event logs for intersections where the para-transit vehicles traversed were used. 
It should be noted that both GPS data and signal event logs contain time information. Using this 
time information, the speed and travel time data were then identified as to whether or not they were 
associated with signal preemptions.  Based on the traffic speed data extracted for the normal and 
preemption conditions, tests of hypotheses were performed to compare the means and variances 
of the traffic speeds during preemption and normal operations. The results from testing whether 
the variance of traffic speed during preemption is greater than that during normal operations can 
determine whether or not emergency preemptions caused turbulences in traffic flow that may have 
some implications for safety. The test of whether the mean of traffic speeds changes significantly 
after preemption provides an evaluation of its overall impact on traffic flow. Regression analysis 
was also performed in this study to identify the factors associated with turbulences in traffic speeds 
during preemption operations.

This paper contains six sections. The first section provided an introduction to the problems to 
be addressed in this study and described the methodology. In the second section, a literature review 
on previous studies related to the evaluation of the impact of emergency preemption on traffic 
operations is provided. The third section presents the methodology used to evaluate the impact of 
preemptions on traffic operations. In the fourth section, the data collection is described, including 
the data sources, the assumptions used in extracting data and the validation of the data. The fifth 
section presents the analysis, and the last section provides conclusions, recommendations and future 
study needs.
 
LITERATURE REVIEW

The concerns on the impacts of emergency preemptions on the mobility of general traffic 
are reflected in a survey conducted by Gifford et al. (2001). The authors stressed that although 
emergency and transit agency personnel are interested in signal preemption technology, they and 
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the other stakeholders have significant questions and reservations to be considered in the adoption 
and deployment of preemption and priority systems.  Some studies, such as Nelson and Bullock 
(2000), Bullock et al. (1999), and Yun et al. (2007), evaluated the impact of emergency preemptions 
using the “hardware-in-the-loop” (HITL) simulation technique. In the HITL technique, realistic 
simulations of emergency preemptions are performed in a real time virtual environment—it 
combines a microscopic simulation program and an actual traffic controller. One of the studies 
concluded that even though HITL has the capability to evaluate the preemption operations, the huge 
computational time requirements may be a significant disadvantage of the technique. Casturi et al. 
(2000) developed an advanced macroscopic model to represent emergency vehicles by which the 
impacts of emergency vehicles on general traffic were evaluated.

Nelson and Bullock (2000) investigated the impact of emergency vehicle signal preemption 
on closely spaced arterial traffic signals. It simulated a network consisting of four coordinated 
intersections on a principal arterial, seven emergency vehicle paths and three different transition 
algorithms. The designed simulation scenarios considered different time periods, each of which 
was associated with a different traffic volume and numbers of preemptions. The results showed that 
the impact of single preemption on the overall travel time and delay for the modeled network was 
minimal. For most scenarios, the impact of preemption was the least for the arterial and crossing 
streets when implementing the smooth transition strategy. The impact of preemption was more 
severe when multiple preemptions happened over a short time period. The following key factors 
were found to affect the impact of emergency vehicle signal preemption: (1) distance between 
intersections; (2) transition algorithms; (3) saturation of intersection; (4) duration of preemption; 
and (5) amount of slack time (the difference between the amount of time emergency preemption 
takes and the amount of time allocated in each cycle) available in each signal cycle. Similar findings 
can be found in the study by Bullock et al. (1999).

Yun et al. (2007) evaluated various preemption strategies for the case where an emergency 
vehicle arrives at a single approach on a coordinated-actuated traffic signal system. A coordinated-
actuated traffic signal system is a series of coordinated signals that use information on current 
traffic demand (as received from sensors, etc.) to alter one or more aspects of the signal timing. 
The roadway section simulated in this study was an urban corridor that included four coordinated-
actuated signals. Different scenarios consisting of a different number of cycles and sequences of 
phases for crossing streets were evaluated. They found that even a single preemption call could 
cause significant increases in delays and travel times.

Casturi et al. (2000) developed an advanced macroscopic model to assess the impact of 
emergency signal preemption on traffic delay. To mimic the pullover effect of the general traffic 
in response to an emergency vehicle, a mechanism to represent a capacity reduction factor was 
developed. To test the model, a simple network of a one-lane, one-way street with three intersections 
was constructed, and five test scenarios consisting of different frequencies of emergency vehicles 
and headways were designed. The impact of signal preemption on the general traffic, especially on 
crossing streets, was evaluated.

 
RESEARCH METHODOLOGY

Hypothesis Testing of Speeds in Preemptions

To study whether signal preemptions have any impact on traffic conditions, an F-test was performed 
first on whether or not the variances of traffic speeds during preemption and normal operations 
were the same. A reason for this test is that it has been perceived that some vehicles may speed 
up by trailing emergency vehicles, and others may be slowed down, yielding their right of ways 
to emergency vehicles. Due to this perception, the variance of vehicle speeds may increase due to 
emergency vehicle preemption of traffic lights. The variance of the speed was tested first for three 
different locations of the general traffic relative to the path of an emergency vehicle: (1) in the same 
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direction of emergency vehicles, (2) in the opposite direction of emergency vehicles, and (3) on 
crossing streets. 

In performing the F-test, the null hypothesis is that there is no significant difference between 
the variance of the speed during the preemption ( 2

Pσ ) and normal operations ( 2
Nσ ). The alternative 

hypothesis is that the variance during preemption is greater than it is during normal operations. 
These two hypotheses can be written as:

(1)	 ;	

(2)	 .

The F-test statistic can be derived as

(3)

                                                       	 .
The significance level α is chosen to be 0.05. The hypothesis of the two variances being equal is 
rejected if 

(4)	  .

In this formula, n1 and n2 represent sample sizes when traffic is in preemption and normal conditions, 
respectively.

After the test on the variance of traffic speed, t-tests were performed to determine whether 
signal preemptions increase or decrease traffic speed, or whether it remains the same. The null 
hypothesis is that there is no difference between mean traffic speeds during preemption and normal 
operations, which can be written as

(5)	 H0 : S
P = SN.

where SN and SP represent the averages of the traffic speeds during the normal and preemption 
operations, respectively. The alternative hypothesis is preemptions speeding up traffic, which can 
be expressed as:

(6)	 H1 : S
P > SN.	

Another alternative hypothesis is for slowing down traffic, which is:

(7)	 H1 : S
P < SN.

The t-test statistic can be written as:

(8)	 	.
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The significance level α is chosen to be 0.05. The conditions for accepting these two alternative 
hypotheses expressed in Equations (6) and (7) can be written as:

(9)	 t ≥ tα (m) for an upper one tailed test;	
	
(10)	 t ≤ −tα (m) for a lower one tailed test;	

where m represents degree of freedom. If the variances were found to be equal, then:

(11)	m = n1 + n2 − 2.

Regression Analysis of Traffic Speeds in Emergency Preemption

To identify the factors that influence the speed of general traffic during preemption, a linear 
regression model of the following form was developed:	

(12)	S xj
P

ij j′ +β ε ,  j = 1,...,M and i = 1,...,K ,     
	
where xij denotes the vector of factors K that influence the traffic speed during preemption operations, 
and εj is a random error.  M represents the number of observations. 

DATA COLLECTION AND PROCESSING

In this study, speed and travel time data were collected through GPS devices installed on the para-
transit vehicles in the Las Vegas area. Unlike the Citizens Area Transit (CAT), a fixed route system, 
para-transit in Las Vegas is a special bus system serving disabled or senior citizens. Para-transit 
service is provided 24 hours a day, seven days a week, and it operates not only within the urbanized 
area, but also outside the urbanized area as required. Due to their special services, para-transit 
vehicles have fewer stops than fixed-route bus services. From this perspective, para-transit vehicles 
can be used as surrogates of regular traffic from the operation perspective. There are about 150 para-
transit vehicles in Las Vegas, each equipped with GPS devices to determine its location in real time. 

The Regional Transportation Commission (RTC) of Southern Nevada operates the para-
transit services and provided the GPS data for over 100 days for this study. These data include 
the identifications of the vehicles and their locations represented as longitudes and latitudes with 
associated time and date. Since these GPS data did not contain any information about road segments 
the vehicles were running on, they were processed to identify their locations. The longitude and 
latitude were overlaid on a map of Las Vegas to identify the location of the para-transit at a given 
time and date.  The speeds of the para-transit vehicles were then derived by processing the GPS 
route data (longitudes, latitudes and time) sequentially in the order they were traversed. Most road 
segments were found to have more than one traffic speed data point. Based on these data, their mean 
and variance were calculated. 

To validate the derived travel time and speed, we used the data from a travel time study 
conducted by a consulting firm (Kaseko and Teng 2005). In that study, several test cars were driven 
on the road network that covered a majority of the major arterials in the Las Vegas area. Travel time 
data were collected during peak and off-peak hours. Note that the travel times and speed data in 
the study conducted by the consulting firm were derived based on the road segments and corridors 
defined in a travel demand model that was maintained by the RTC, while the travel times and 
speeds derived in our emergency preemption study were based on actual road segments on a GIS 
map that were shorter than the road segments defined in the travel demand model. Therefore, the 
GIS segment-based travel speeds were aggregated for the segments and corridors that were defined 
in the travel demand model prior to comparing the speed data collected by the consulting firm and 
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the data we derived from GPS data. Comparison results indicated that the speeds derived from the 
GPS data were lower than those collected by the consulting firm.  There are several reasons for 
the discrepancies. One is that speeds in our study were based on para-transit vehicles, which were 
basically vans. This type of vehicle usually runs at a lower speed than automobiles, which were 
the test vehicles employed in the study by the consulting firm. It is assumed that this difference 
between the speeds measured by the consulting firm and those we derived from GPS data would not 
influence the results of the evaluation in our study. The reason for this assumption is the fact that the 
evaluation in this study was based on the comparison between traffic speeds during preemption and 
normal operations, both derived based on para-transit vehicles. Any bias in the traffic speeds derived 
based on para-transit vehicle would be eliminated in the comparison.

To identify the travel time/speeds under the influence of preemptions, the location and length 
of signal preemptions were identified based on the traffic signal data file and traffic signal event 
log data provided by the RTC. Thirty-seven (37) days (from January to June, 2006) of traffic signal 
event log data were processed and analyzed. Some of these data were incomplete (not for full 24 
hours), and hence deleted. As a result, event logs for only 919 signals were obtained. Among these, 
506 signals were found to have preemptions.

After identification of emergency preemptions, the traveling direction of the emergency vehicle 
was determined based on the information included in the traffic signal event logs and the traffic 
signal phase logs, identifying the traffic signals/intersections that were on the path followed by 
an emergency vehicle. These identified traffic signals were then used to derive the route that the 
emergency vehicle followed, using time sequence for start of preemptions at adjacent intersections. 
With the route derived for the emergency vehicle, its direction was finally determined. Then, the 
location of the para-transit vehicle relative to the emergency vehicle was correspondingly determined.

Determining whether or not a derived speed was influenced by an emergency preemption 
was based on whether or not the corresponding para-transit vehicle arrived at or departed from 
an intersection within a certain time period (one to six minutes) after the start of an emergency 
preemption at the intersection. The travel time/speed derived previously were labeled as being 
influenced if the calculated arrival or departure time for the para-transit vehicle is in this time range. 
The para-transit GPS data, traffic signal event log data, and traffic signal phase log data obtained 
for this study were for different days. It was found that they were commonly available for April 
18 and 19, 2006, May 25 and 30, 2006, and June 1, 12, and 13, 2006. Thus, the samples of traffic 
speeds data from these seven days were processed to identify traffic speeds influenced by signal 
preemptions. To compare speeds influenced by signal preemptions to normal speed (speed when 
there is no preemptions), it was necessary to use the influenced speeds on those segments where 
normal speeds were available, too. Normal speeds were calculated by first matching the GPS data 
time with signal event log time. Then, the GPS data not coinciding with preemption were used 
to determine normal speed. A total of 978 segments met this condition and therefore generated a 
sample size of 978 influenced and normal speed data for analysis.

DATA ANALYSIS

Hypothesis Testing of Vehicle Speeds in Preemption

Table 1 lists the test results of the F-test used to determine whether or not the variances of the speeds 
during preemption and normal operations were equal. The “same,” “opposite,” and “crossing” in 
the table indicate the relative direction of the general traffic versus an emergency vehicle.  For 
each segment, both speed during preemption and speed during normal conditions were derived, 
making their sample size equal (n1 = n2). It can be seen from the table that the variances of average 
traffic speeds during preemption operations were greater than during normal operations. This result 
implies that the traffic in preemption may pose a higher safety hazard. 
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The t-test was designed to determine whether the speed averages during preemption and 
normal operations were equal. The bottom part of Table 1 lists the results. Clearly, the general traffic 
operating in the same direction as emergency vehicles or on crossing streets was slowed down. 
However, traffic operating in the opposite direction was not slowed by emergency preemption.

Regression Analysis of Vehicle Speeds During Preemptions

The impact of geometric design elements, traffic characteristics and roadway characteristics on 
general traffic speed is well documented (for example: Yagar and Aerde 1983, Fitzpatrick et al. 
2005, and Garber and Gadiraju 1989).

Table 1: Results of Hypothesis Tests for Speeds
F-Tests

Sample Size 
(n1=n2)

Calculated Variances Direction of traffic 
with respect to 

emergency vehicle
F-Value F Critical 

Value Finding
Normal Impacted

354 33.65 95.88 Same 0.3509 1.19 Variance 
increased

419 35.70 77.32 Opposite 0.4616 1.17 Variance 
increased

205 43.30 62.13 Crossing 0.6965 1.26 Variance 
increased

t-Tests

Sample Size 
(n1=n2)

Calculated Means Direction of traffic 
with respect to 

emergency vehicle
t-Value t Critical 

Value Finding
Normal Impacted

354 22.24 20.68 Same 2.5854 1.9640 Lower than 
Normal

419 22.26 21.82 Opposite 0.8292 1.9632 Not Lower than 
Normal

205 21.87 20.13 Crossing 2.4270 1.9657 Lower than 
Normal

	
Based on availability, the following factors were considered in the regression analysis: (1) 

duration of signal preemption (seconds), (2) the direction of regular traffic versus the direction of 
emergency vehicle (opposite direction compared to same direction and crossing), (3) time of the 
day (peak hour compared to non-peak hour), (4) roadway classification (major street compared to 
minor street), and (5) transition time (seconds). The response variable was the vehicle speed during 
signal preemption, “Impacted Speed.” Table 2 shows the descriptive statistics for the variables. The 
duration of signal preemption (labeled as “Pre-duration”) was considered because more traffic would 
be caught in the traffic turbulence caused by emergency preemption if the duration of preemption 
is very long. Which direction regular traffic was traveling relative to an emergency vehicle may 
influence the extent of the impact by the emergency vehicle.
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Table 2: Descriptive Statistics for Modeling Variables
Variable Type Unit Mean Std. Dev. Min Max
Impacted Speed Continuous Miles Per Hour 21.0 9.1 1.9 56.2
Preemption Duration Continuous Seconds 25.4 13.6 6 120
Opposite Binary   0.4 0.5 0 1
Peakhour Binary   0.3 0.5 0 1
Major Binary   0.9 0.3 0 1
Transition Time Continuous Seconds 197.6 112.4 9 543

When an emergency vehicle arrives at an intersection, the traffic signal on the crossing streets 
may either be cut short for green or extended for red. The traffic on the crossing street is expected to 
be influenced. Such influence may not be significant if the traffic flow on the crossing street was low. 
In modeling, the dummy variable, labeled as “Opposite,” was created to indicate whether regular 
traffic was in the opposite direction relative to an emergency vehicle. Intuitively, preemptions may 
have more impact during peak periods. Thus, based on the time period a preemption happened, a 
dummy variable, labeled as “Peakhour”, was considered. The estimated impact of this variable was 
compared to the base (non-peak condition). Roadway classification was considered in the regression 
model, because usually the street having more lanes can provide more room for the general traffic to 
pull over or to allow the emergency vehicle to pass by. Number of lanes may directly be related with 
roadway functional class. Most of the preemptions in this study happened on major arterials (864 
observations) and minor arterials (114 observations). Therefore, only these two road classifications 
were considered in this model. A dummy variable, “Major,” was created to indicate that an emergency 
vehicle arrived from a major arterial. The estimate of this variable was compared to the base (minor 
roadway). The variable “Transition” measures the time during which, for coordinated signals, signal 
phasing and timing transition back to normal operation after a preemption.		

Table 3 presents the linear regression results. Consistent with intuition, the preemption duration 
has a negative association with impacted vehicle speeds. This means that when preemption duration 
was long, vehicles tended to operate at a lower speed (regardless of where and when it is). The 
positive coefficient associated with the variable “Opposite” implies that compared to vehicles in 
the same direction as the emergency vehicle, vehicles in the opposite direction tend to speed up as 
a result of signal preemption. The traffic in the same direction may be delayed for yielding its right-
of-way to the emergency vehicle, while the traffic in the opposite direction may fully take advantage 
of the extended green time. Note that at most intersections, when the signal facing the emergency 
vehicle turns green, also those facing the opposing traffic turn green. The negative coefficient for the 
variable “Peakhour” implies that traffic, regardless of its relative location, moved relatively slower 
when a preemption happened in peak period than when it happened during off-peak period. This is 
due to the fact that more traffic is influenced by preemptions in this period than others. The coefficient 
of the variable “Major” is positive, which reflects the situation that traffic on major roadways move 
at higher speeds due to availability of room to yield the right-of-way to an emergency vehicle (in 
the case of vehicles moving in the same direction as the emergency vehicle). Similar to preemption 
duration, transition time has a negative impact on vehicle speeds.  

Variables “Opposite” and “Major” are significant at the 0.01 level. “Peakhour” is significant at 
the 0.05 level, and “Pre-duration” and “Transition” are significant at the 0.10 level. The R2 value is 
low, but the purpose of the analysis is hypothesis testing not forecasting. It should be noted that the 
model is significant according to the F-test (p-value of 0.0001).
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Table 3: Results of Regression Analysis

Variables Coefficient Std. Err. t-value p-value 90% Conf. Interval
Pre-duration -0.040 0.021 -1.88 0.060 -0.0747 -0.0050
Opposite 1.660 0.583 2.85 0.005 0.7000 2.6196
Peakhour -1.609 0.643 -2.50 0.013 -2.6671 -0.5502
Major 2.900 0.900 3.22 0.001 1.4189 4.3818
Transition -0.005 0.003 -1.80 0.073 -0.0091 -0.0004
Constant 19.514 1.073 18.18 0.000 17.7471 21.2812
Number of obs =     978
F(  5,   972) =    6.28
 Prob > F      =  0.0001
R-squared     =  0.0316
Adj R-squared =  0.0263

CONCLUSIONS, RECOMMENDATIONS, AND FUTURE STUDY NEEDS

This study evaluates the impact of emergency vehicle signal preemption on traffic operations in the 
Las Vegas Urbanized Area. The evaluation of the impacts of preemption on traffic conditions focused 
on comparison of traffic speeds during preemption operations with those in normal operations. 
Hypothesis tests were performed on the variance of traffic speeds during preemption versus those 
in normal operations. The results showed that the variance of traffic speed during preemptions was 
significantly larger than during normal operations, which verifies the speed turbulence caused by 
an emergency vehicle on regular traffic. Such variance may have a significant impact on traffic 
safety on the road (Varhelyi et al. 2003, and Garber and Gadiraju 1989). A hypothesis test was also 
conducted on the means of traffic speeds during preemption operations and those during normal 
operations. The results indicated that the emergency vehicle slowed down the traffic only in the 
same direction and on crossing streets.

In addition to the hypothesis tests, the influence of roadway and traffic characteristics on speed 
of traffic was analyzed using a regression model. The results show that duration of preemption has 
a negative association with speeds. Similarly, preemption during the peak-hour has a significant 
negative impact on traffic speeds compared to preemption during non-peak time. The location of 
traffic relative to the emergency vehicle was also evaluated. It was found that traffic running in 
the opposite direction of the emergency vehicle tends to have higher speed as a result of signal 
preemption when compared to those running in the same direction as the emergency vehicle. Also, 
the results showed that traffic running on major roadways tends to have higher speed. This may be 
due to availability of room for maneuvering compared to minor roadways. Similar to preemption 
duration, transition time has a negative impact on vehicle speeds.

While it is difficult to control the time of the day (peak or non-peak) during which signal 
preemption is needed, it is possible to optimize (minimize) the preemption duration, as well as 
transition time. The results of this study suggest that traffic in the opposite direction tends to have 
higher speed as a result of signal preemption. This suggests that a study on safety implications of 
higher speeds of traffic in the opposite direction is needed. Also, in this study the locations of traffic 
relative to an emergency vehicle were classified into (1) the same direction as the emergency vehicle, 
(2) the opposite direction, and (3) on crossing streets. It may also be worthwhile to further break 
down and classify the location of the same direction traffic to “leading an emergency vehicle” and 
“trailing an emergency vehicle.” By knowing these locations, the impact of emergency vehicles on 
the speed of traffic in the same direction of an emergency vehicle can be more precisely determined. 
Due to the limitation of the data available to this study, such identification of the location of general 
traffic was impossible. It is recommended that the GPS data be collected in a shorter distance 
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interval, which would make such identification possible. In addition, the impacts of presence of 
raised median as well as the number of lanes need to be studied.
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