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Application and Comparison of Regression and 
Markov Chain Methods in Bridge Condition 
Prediction and System Benefit Optimization
by Yi Jiang

The	maximization	of	a	bridge	system	is	achieved	using	mathematical	optimization	techniques,	such	
as	linear	programming	and	dynamic	programming.	For	each	bridge,	the	input	data	of	the	bridge	
project	selection	model	includes	the	predicted	bridge	condition	in	future	years,	the	recommended	
bridge	 repair	action,	 the	estimated	cost	of	 recommended	bridge	 repair	action,	and	 the	expected	
improvement	or	benefit	from	the	repair	action.	Through	mathematical	manipulation,	bridge	projects	
are	selected	to	maximize	the	total	expected	benefit	of	the	bridge	system	while	a	number	of	constraints	
are	simultaneously	satisfied.	This	optimization	process	is	based	on	the	predicted	bridge	conditions.	
Therefore,	the	accuracy	of	bridge	condition	predictions	is	vital	to	the	effectiveness	of	bridge	project	
selection.	This	paper	shows	that	bridge	condition	predictions	will	affect	bridge	project	selections	
and	the	corresponding	system	benefits.

INTRODUCTION

The ultimate objective of a bridge management system is to select bridge projects for a multiyear 
period so that the total system benefit will be maximized through performing the scheduled 
maintenance, rehabilitation, and replacement activities to the selected bridges. In a bridge 
management system, the maximization of a bridge system benefit is achieved using mathematical 
optimization techniques, such as integer linear programming and dynamic programming (Winston 
2003). For each bridge, the input data of the bridge project selection model include the predicted 
bridge condition in future years, the recommended bridge repair action, the estimated cost of 
recommended bridge repair action, and the expected improvement or benefit from the repair action. 
Through mathematical manipulation, bridge projects are selected to maximize the total expected 
benefit of the bridge system while a number of constraints are simultaneously satisfied. Bridge 
condition rating is the most important variable considered in the process of bridge project selection. 
Decision making, either at the system level or at the project level, is based on bridge conditions 
at present and in the future. The accuracy of the future condition prediction directly affects the 
outcome of optimization in selecting bridge projects.  Therefore, the accuracy of bridge condition 
predictions is vital to the effectiveness of bridge project selection. If the predicted bridge conditions 
are not accurate, the selected bridge projects will not result in a truly maximized system benefit. 

The purpose of this study was to help highway engineers and planners identify and choose 
an appropriate method for bridge condition predictions. The statistical regression theory (Neter 
et al. 1985) and the Markov chain theory (Winston 2003) have been applied to predict structural 
conditions in bridge management systems. In this paper, the accuracies of condition predictions 
based on the two theories are compared with the Indiana highway bridge condition data. Under 
a limited budget for bridge repair and rehabilitation, bridge projects can be selected from a given 
group of bridge candidates through mathematical optimization so that a maximum system benefit 
can be achieved. A key requirement for the optimization in bridge project selection is the ability to 
obtain reliable bridge condition predictions. As the available budget decreases, fewer bridges will 
be selected for repair and rehabilitation. Less bridge repair or rehabilitation now will lead to higher 
cost in the future because of further bridge condition deteriorations. 



Bridge Condition Prediction

92

CONDITION PREDICTION MODELS

Regression Methods

There are various types of bridge condition prediction models based on statistical regression theory. 
Applications of piecewise linear regression in bridge condition prediction can be found in Fitzpatrick 
et al. (1981) and Hymon et al. (1983). Linear regression with two independent variables, bridge age 
and average daily traffic (ADT), was applied to predict the conditions of bridge deck, superstructure, 
and substructure (Busa et al. 1985). 

According to the FHWA bridge rating system, bridge inspectors use a range from 0 to 9, with 
9 being the maximum rating number for an excellent condition and 0 being the rating for a failed 
and out of service condition (USDOT 2006). The objective of developing regression equations was to 
find the relationship between condition rating and bridge age. The polynomial regression method was 
applied to predict bridge conditions in Indiana (Jiang and Sinha 1989). A third order polynomial 
model was used to obtain the regression function of the relationship. The polynomial model is 
expressed by the following formula (Neter et al. 1985).

(1) 

Where:

Y(Ti) – Condition rating of bridge i, 0 ≤ R≤ 9, with rating 9 as the rating of a perfect condition;
Ti – Age of bridge i;
β0, β1, β2, β3 – Regression coefficients;
εi – Error term.

The Indiana inspection includes ratings of individual components such as deck, superstructure, 
and substructure as well as of the overall bridge condition. The complete data base included 
about 5,700 state owned bridges in Indiana. Through statistical analysis and regression, the 
regression equations were developed for concrete and steel bridges and bridge components (deck, 
superstructure, and substructure) on Indiana interstate highways and non-interstate highways (Jiang 
and Sinha 1989). As examples, some of the developed regression equations developed for Indiana 
bridges are listed below.

• Deck conditions of steel bridges on interstate highways:

• Superstructure conditions of concrete bridges on non-interstate highways:

• Substructure conditions of concrete bridges on interstate highways: 

As can be seen, the condition rating Y(Ti) can be predicted based on the bridge age with the regression 
equation once the bridge type and highway type are identified.

Markov Chain Approach

The Markov chain is a special case of stochastic processes (Winston 2003). The theory of stochastic 
processes has been applied in many areas of engineering and other applied science. For example, the 
theory was used by Li and Zhang (2007) for soil mapping from irregularly distributed point samples. 
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Caleyo et al. (2009) developed an empirical Markov chain-based stochastic model for predicting the 
evolution of pipeline pitting corrosion depth and rate distributions from the observed properties of 
the soil. The Markov model was also applied to analyze the impact of Wal-Mart on the grocery market 
and to develop the competitive strategies of grocery retailers (Yang et al. 2010).

A stochastic process is said to be Markovian if given the value X(t), the value of X(s) for s > t does 
not depend on the value of X(μ) for μ < t.  In other words, the future behavior of the process depends 
only on the present state but not on the past.  In formal terms, a process is said to be Markovian if

(2)  

where t0 < t1 < ... < tn < t.

The theory was applied in pavement management systems (Butt et al. 1987, Li et al. 1996), storm 
water pipe deterioration modeling (Micevski et al. 2002), and bridge management systems (Jiang and 
Sinha 1989). Essentially, a stochastic process is a probability-based process describing the changes 
of random variables in time. The Markov chain as applied to bridge performance prediction is based 
on the concept of defining states in terms of bridge condition ratings and obtaining the probabilities 
of bridge condition changing from one state to another. These probabilities are represented in 
a matrix form that is called the transition probability matrix or simply, transition matrix, of the 
Markov chain. Knowing the present state of bridges, or the initial state, the future conditions can 
be predicted through multiplications of the initial state vector and the transition probability matrix.

Ten bridge condition ratings are defined as 10 states with each condition rating corresponding to 
one of the states. For example, condition rating 9 is defined as state 1, rating 8 as state 2, and so on. 
Without repair or rehabilitation, the bridge condition rating decreases as the bridge age increases. 
Therefore, there is a probability of condition changing from one state, say i, to another state, j, 
during a given period of time, which is denoted by pi,j.

(3)

In the transition matrix, p1,1 is the probability of condition changing from state 1 (rating 9) to state 
1 (rating 9) in one year, p1,2 from state 1 (rating 9) to state 2 (rating 8), and so on.  As shown in 
the transition matrix, some of the transition probabilities are equal to 0. This is because the bridge 
condition ratings will not increase without repair or rehabilitation actions. To simplify the transition 
matrix, Jiang and Sinha (1989) made some realistic assumptions according to actual bridge condition 
data. First, it is assumed that the bridge condition rating would not drop by more than one in a single 
year. This is reasonable because the bridge condition rating in Indiana seldom drops more than 
one in a single year as found by the research team that developed the Indiana Bridge Management 
System (Sinha et al. 1989). Second, it is assumed that the lowest bridge condition rating is 3, because 
it is an FHWA requirement that a bridge be repaired or replaced when its condition rating reaches 
3. Any bridge with a condition rating below 3 must be closed due to safety concerns. With the two 
assumptions, the transition matrix of condition ratings has the following form:
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(4)

(4)

where:
p(i) – Transition probability from state i to state i;
q(i) – Transition probability from state i to state i-1, q(i)=1-p(i). 

In the matrix, p(1) is the transition probability from rating 9 (state 1) to rating 9, and q(1), from rating 
9 to rating 8 (state 2), and so on.  It should be noted that the lowest rating number before a bridge 
is repaired or replaced is 3. Consequently, the corresponding transition probability p(7) equals 1. 

Knowing the present condition of a bridge, or the initial state, the future conditions can be 
predicted through multiplications of initial state vector Q(0) and the transition matrix P. The state 
vector for year T, Q(T), can be obtained by the multiplication of initial state vector Q(0) and the Tth 
power of the transition probability matrix P:

(5) Q(T) = Q(0) P P . . . P = Q(0) P
T

Equation 5 is equivalent to the following:

(6) Q(T) = Q(T-1) P

Thus, a Markov chain is completely specified when its transition matrix P and the initial state vector 
Q(0) are known. Since the initial state vector Q(0) is usually known, the main problem of the Markov 
chain approach in this study is to determine the transition probability matrix. The detailed description 
of the transition probability matrix development is given in Jiang and Sinha (1989). 

The maximum rating of bridge condition is 9 and it represents a near-perfect condition. It is 
almost always true that a new bridge has condition rating 9. In other words, a bridge at age 0 has 
condition rating 9 with unit probability.  Thus, the initial state vector Q(0) of a new bridge is always 
[1, 0, 0, 0, 0, 0, 0], where the numbers are the probabilities of having condition rating of 9, 8, 7, 6, 
5, 4, and 3 at age 0, respectively. 

An essential property of Markov chain is that the future behavior of the process depends only on 
the present state but not on the past. As long as the bridge condition is known at any time, the state vector 
at that time can be used as the initial vector Q(0) to predict the future condition. For example, if a bridge 
is 10 years old with a condition rating 7, then the initial state vector Q(0) should be [0, 0, 1, 0, 0, 0, 0]. 
That is, the unit probability corresponds to condition rating 7 and the current time (age 10) is used as the 
starting time (time 0). With this initial state vector and a transition probability matrix, future condition 
ratings of this bridge can be estimated from age 10.





























=

1000000

)6(q)6(p00000

0)5(q)5(p0000

00)4(q)4(p000

000)3(q)3(p00

0000)2(q)2(p0

00000)1(q)1(p

P



Bridge Condition Prediction

95

Let R be a vector of condition ratings, R=[9 8 7 6 5 4 3], and R’ be the transform of R, i.e.,

Then the estimated condition rating at year t by Markov chain is

(7) E(t) = Q(t) R
’

Equation 7 can also be expressed as:

(8) E(t) = Q(0) P
t R’

An example set of computations is given in the following. The transition matrix for deck 
conditions of concrete bridges on non-interstate highways was obtained (Jiang and Sinha 1989):

(9)  

For illustration, p(1)=0.700 indicates that the probability of bridge deck condition changing from 
state 1 (condition rating 9) to state 1 (remaining in state 1) in a one-year period is 0.700, and 
the probability of changing from state 1 to state 2 (condition rating 8) is q(1)=0.300. Similarly, 
p(2)=0.780 indicates that the probability of transitioning from state 2 to state 2 (remaining in state 
2) in a one-year period is 0.780, and the probability of transitioning from state 2 to state 3 (condition 
rating 7) is q(2)=0.220.

Assuming there is a new concrete bridge with a condition rating 9, the initial state vector should 
be Q(0) = [1 0 0 0 0 0 0]. The bridge deck’s condition rating can be predicted by Equations 6 and 
7 with the matrix P (Equation 9). For example, the state vectors and condition ratings for year 0 
through year 6 are given as follows:

 

3
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1.0000.0000.0000.0000.0000.0000.000

0.6000.4000.0000.0000.0000.0000.000

0.0000.5000.5000.0000.0000.0000.000

0.0000.0000.4000.6000.0000.0000.000

0.0000.0000.0000.1260.8740.0000.000

0.0000.0000.0000.0000.2200.7800.000

0.0000.0000.0000.0000.0000.3000.700

  = P
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 R = [9 8 7 6 5 4 3]

 Q(0) = [1 0 0 0 0 0 0]
 E(0) = Q(0) R’ = 9.0

 Q(1) = Q(0) P = [0.70 0.30 0.00 0.00 0.00 0.00 0.00]
 E(1) = Q(1) R’ = 8.70

 Q(2) = Q(1) P = [0.49 0.44 0.07 0.00 0.00 0.00 0.00]
 E(2) = Q(2) R’ = 8.42

 Q(3) = Q(2) P = [0.34 0.49 0.16 0.01 0.00 0.00 0.00]
 E(3) = Q(3) R’ = 8.17

 Q(4) = Q(3) P = [0.24 0.49 0.24 0.03 0.00 0.00 0.00]
 E(4) = Q(4) R’ = 7.94

 Q(5) = Q(4) P = [0.17 0.45 0.32 0.05 0.01 0.00 0.00]
 E(5) = Q(5) R’ = 7.72

 Q(6) = Q(5) P = [0.12 0.40 0.38 0.07 0.02 0.01 0.00]
 E(6) = Q(6) R’ = 7.50

The above example used age 0 as the starting time.  However, it should be pointed out that the 
Markov prediction can be performed using any point in time as the starting time as long as the 
condition rating is known.  This is because the future behavior of the Markov process depends only on 
the present state but not on the past.

Some states have started to use element-level bridge inspections for bridge condition ratings 
(FHWA  2009). The element-level bridge inspection system was proposed by the American Association 
of State Highway and Transportation Officials (AASHTO) in 1995 (AASHTO 1995). The element-
level inspection divides bridge structural components into sub-elements. Therefore, it contains more 
bridge elements for inspection and provides more detailed bridge condition information. However, 
the Federal Highway Administration (FHWA) has found widespread variability in the elements used 
by states. The lack of uniformity in states’ use of element-level data has impeded federal efforts to 
collect and use element-level bridge data (FHWA 2009). Nonetheless, if it is needed, the prediction 
methods described in this paper can be readily applied to the element-level bridge data because the 
general principles remain the same.

BRIDGE PROJECT SELECTION AND SYSTEM BENEFIT OPTIMIZATION

Optimization techniques manipulate the tradeoffs between the objective and constraints systematically 
or mathematically, so that an optimal solution to the problem among many possible solutions can be 
obtained.  In managing a bridge system, optimization techniques can be applied to produce optimal 
strategies in project selection by maximizing the system benefit subject to the constraints, such as 
available resources. An integer linear programming model is used in the following to demonstrate 
the effects of bridge condition predictions on system benefits. The optimization model is formulized 
as follows:
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Objective function:

(10) 

Subject to the following constraints:

(a) available budget:

(11) 

(b) one activity cannot be undertaken more than once on one bridge in T years:

(12) 

(c) zero-one integer decision variable:

(13) Xi,t = 0 or 1

where:
Xi,t  = 1, if bridge i is chosen for the proposed rehabilitation or replacement;
X i,t  = 0, otherwise;
Ei  = effectiveness gained by bridge i if the proposed rehabilitation or replacement   
  activity is conducted;
B = total available budget for the program period;
ci  = estimated cost of activity a on bridge i;

The effectiveness of a bridge improvement activity is defined as follows:
(14) Ei = ADTi×ΔAi×(1+Csafei)×(1+Cimpci)

where:
ADTi  = average daily traffic on bridge i.
ΔAi  = area under regression curves of bridge i obtained by the proposed rehabilitation 
     activity; as shown in Figure 1.
Csafei  = coefficient of safety condition of bridge i, converted from bridge safety utility value; 
     as shown in Figure 2.
Cimpci  = coefficient of community impact of bridge i, converted from community impact 
     utility value in terms of detour length; as shown in Figure 3.
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Figure 1: Condition Improvement by Rehabilitation

Figure 2: Coefficient of Safety Condition

Figure 3: Coefficient of Community Impact
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As Ei is defined as the effectiveness gained by bridge i if the proposed rehabilitation or 
replacement activity is conducted, it is actually the benefit to be realized if bridge i is chosen. 
As indicated in Figure 1, the benefit begins right after the bridge is repaired or replaced and lasts 
until the end of the average service life. There are several ways that the effectiveness of a bridge 
activity can be defined.  Because ADT is the number of vehicles served by a bridge, the inclusion 
of ADT and ∆A in the effectiveness function (Equation 14) can be interpreted as the measure of 
the improvement that can be experienced by the users or vehicles passing the bridge. Traffic safety 
condition and community impact of a bridge are two other factors affecting decisions on bridge 
rehabilitation or replacement activities in addition to structural condition.  Bridge safety index and 
bridge detour length were used as variables reflecting bridge traffic safety and community impact, 
respectively. The coefficients, Csafe and Cimpc, were used to modify the effectiveness of individual 
bridge projects depending on site specific impacts.

As shown in Figure 1, a particular rehabilitation activity causes a jump in the bridge condition 
rating.  As the bridge age increases, the condition rating gradually decreases from the new condition 
rating.  The area between the regression curves with and without rehabilitation, ∆A, represents an 
improvement in terms of condition rating and service life of the bridge. Figure 2 shows the Indiana 
coefficient of traffic safety index, Csafe, ranging from 0.0 to 1.0. The traffic safety index is primarily 
based on bridge geometrics and it ranges from 1 to 10 with 10 being the index of no potential safety 
problem (Jiang and Sinha 1989). The coefficient of community impact (Cimpc) of bridges is shown 
in Figure 3 and ranges from 0 to 1.0. The community impact coefficient is based on detour length 
(Jiang and Sinha 1989). As detour length increases the community impact coefficient increases. 
Therefore, the effectiveness (Ei) gained by a bridge project is the benefit that the motorists (ADTi) 
will enjoy through the improved bridge condition (ΔAi), the enhanced safety (1+Csafei), and the 
positive community impact duo to avoided bridge closure (1+Cimpci).

In Indiana, bridge rehabilitation activities mainly include deck reconstruction and deck 
replacement. Deck reconstruction work includes shallow and/or full-depth patching of deteriorated 
deck spots and an overlay of the deck after scarifying the wearing surface. In order to increase bonding 
between the bridge deck and the overlay materials, the worn and polished deck surface is scarified by 
grinding to create rough textures. Along with this reconstruction, curbs, railing, and expansion joints 
are replaced in most cases. Other related work includes guardrails, approach slab reconstruction, 
approach shoulder reconstruction, and small amounts of substructure repairs. The deck replacement 
alternative is a more extensive rehabilitation than deck reconstruction. Deck replacement consists 
of a replacement of the entire deck, including rehabilitation of parts of the superstructure and the top 
portion of the substructure. The replacement of the entire bridge is considered when reconstruction 
and rehabilitation cannot adequately correct the existing deficiencies. Thus, bridge rehabilitation 
and replacement activities were grouped into three options: deck reconstruction, deck replacement, 
and bridge replacement.

CONDITION RATING PREDICTIONS

Forty bridges were selected from the Indiana’s bridge condition database in 2004 to illustrate bridge 
condition predictions with polynomial regression and Markov chain methods. The Indiana bridge 
condition database is used for the Indiana Bridge Management System. It should be pointed out 
that the main function of a bridge management system is to select bridge projects that will provide 
maximum system benefit under budget constraint. Therefore, it is a decision-making tool at the 
system level rather than at the project level. The information pertaining to these selected bridges 
is shown in Table 1. The proposed activity for each bridge in the table is the result of closer field 
inspection and engineering decision at the project level. The project level decision is used as an 
input of the system optimization.
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As can be seen in Table 1, each of the selected bridges has four consecutive condition ratings. 
That is, the actual condition ratings of these bridges are known. Since each bridge was observed 
and rated once every two years, the four ratings represent bridge conditions observed in 1997, 1999, 
2001, and 2003. For example, the condition ratings of the first bridge were (6, 6, 6, 5), meaning that 
the condition rating was 6 in 1997, 6 in 1999, 6 in 2001, and 5 in 2003. 

To compare the condition predictions of the two prediction methods, the condition ratings 
of the 40 bridges were calculated with the polynomial regression method and the Markov chain 
method. With the polynomial regression method, each bridge condition rating was calculated using 
the bridge age as the input. With the Markov chain method, the condition rating in 1997 of each 
bridge was utilized as the “current” condition to predict the conditions in 1999, 2001, and 2003.  The 
actual and predicted condition ratings for the three years are shown in Tables 2 and 3. Table 2 shows 
the results from the polynomial regression method and Table 3 shows those from the Markov chain 
method. As shown in the two tables, each condition prediction error was calculated by the predicted 
rating subtracting its responding actual rating. To compare the two methods, the prediction errors 
for 1999, 2001, and 2003 are plotted in Figures 4, 5, and 6, respectively.  As clearly illustrated in the 
three figures, the magnitudes of Markov chain prediction errors are smaller than those of polynomial 
regression predictions for a majority of the 40 bridges. In other words, for most of the 40 bridges the 
Markov chain predictions are more accurate than the polynomial regression predictions.

As demonstrated in Tables 2 and 3 as well as in Figures 4, 5, and 6, there are positive and negative 
errors in the condition predictions. The positive errors represent the overestimates and the negative 
errors are the underestimates of condition ratings. To quantitatively compare the magnitudes of 
prediction errors, the absolute values of the prediction errors were used to compute the averages and 
standard deviations. The reason for using absolute values of the prediction errors was to eliminate the 
effects of negative values on the magnitudes of the averages and standard deviations. As illustrated 
in Figures 7 and 8, the Markov chain method produced much better condition rating predictions than 
the polynomial regression method in terms of both average errors and standard deviations.



Bridge Condition Prediction

101

Table 1: Information Pertaining to Sample Bridges

Bridge 
Number Age ADT 

(1000)

Detour 
Length 
(mile)

Remaining 
Service Life

Consecutive 
Condition 
Ratings

Proposed 
Activity

Estimated Cost 
($1000)

1 16 95 5.6 20 6, 6, 6, 5 DRC 306

2 27 105 1.2 15 8, 8, 7, 6 DRC 359

3 31 156 1.9 20 4, 4, 3, 3 DRC 516

4 15 63 1.2 20 6, 5, 5, 5 DRC 365

5 36 15 6.8 20 5, 4, 4, 3 DRC 139

6 26 155 5.6 20 8, 7, 7, 7 DRC 157

7 30 162 1.2 15 4, 4, 4, 3 DRC 273

8 39 428 8.6 25 5, 5, 4, 3 DRC 1690

9 30 39 3.7 13 6, 6, 6, 6 DRC 334

10 25 195 1.2 10 5, 5, 5, 4 DRC 429

11 16 92 1.2 10 6, 6, 6, 5 DRC 261

12 16 92 1.2 10 5, 5, 5, 4 DRC 261

13 15 491 1.2 30 6, 6, 6, 5 DRC 619

14 24 248 1.2 25 7, 7, 6, 5 DRC 96

15 23 98 1.2 30 6, 5, 5, 5 DRC 200

16 30 54 3.7 20 5, 5, 5, 4 DRC 86

17 23 47 3.7 20 6, 6, 5, 5 DRC 161

18 18 78 3.1 20 6, 6, 5, 4 DRC 155

19 35 554 8.6 20 6, 6, 6, 5 DRC 321

20 30 179 3.1 12 6, 6, 6, 5 DRC 213

21 56 120 16.0 5 3, 3, 3, 3 BRP 6500

22 49 108 14.2 5 4, 4, 4, 3 BRP 8098

23 49 135 4.9 8 5, 5, 5, 4 BRP 2850

24 47 255 9.3 2 4, 4, 4, 4 BRP 4432

25 69 185 5.6 5 5, 4, 4, 4 BRP 1686

26 58 152 5.6 5 5, 5, 5, 4 BRP 826

27 42 11 23.5 9 5, 5, 4, 4 BRP 1092

28 74 11 23.5 5 4, 4, 3, 3 BRP 1092

29 65 144 1.9 8 6, 6, 6, 5 BRP 4100

30 40 14 3.1 8 6, 6, 6, 5 BRP 384

31 60 26 3.7 2 3, 3, 3, 3 BRP 251

32 21 60 6.8 8 6, 6, 5, 5 BRP 501

33 48 318 1.9 2 4, 4, 4, 4 BRP 2042

34 21 12 3.7 1 4, 4, 3, 3 BRP 504

35 24 9 3.7 1 4, 4, 3, 3 BRP 374

36 81 8 3.7 1 3, 3, 3, 3 BRP 1255

37 56 53 3.7 1 4, 4, 3, 3 BRP 2014

38 72 102 1.2 2 3, 3, 3, 3 BRP 546

39 84 6 8.6 4 3, 3, 3, 3 BRP 85

40 50 8 4.9 1 4, 4, 4, 3 BRP 364

Note: DRC = Deck Reconstruction  BRP = Bridge Replacement
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Table 2: Accuracy of Bridge Condition Predictions by Regression Method

Bridge
Number

Actual
Rating
in 1999

(A)

Predicted
Rating
in 1999

(B)

Error
(B-A)

Actual
Rating
in 2001

(C)

Predicted
Rating
in 2001

(D)

Error
(D-C)

Actual
Rating
in 2003

(E)

Predicted
Rating
in 2003

(F)

Error
(F-E)

1 6 6.0 0.0 6 5.9 -0.1 5 5.8 0.8

2 8 5.6 -2.4 7 5.6 -1.4 6 5.6 -0.4

3 4 5.6 1.6 3 5.6 2.6 3 5.6 2.6

4 5 6.0 1.0 5 5.9 0.9 5 5.8 0.8

5 4 5.6 1.6 4 5.5 1.5 3 5.5 2.5

6 7 5.7 -1.3 7 5.6 -1.4 7 5.6 -1.4

7 4 5.6 1.6 4 5.6 1.6 3 5.6 2.6

8 5 5.5 0.5 4 5.5 1.5 3 5.4 2.4

9 6 5.6 -0.4 6 5.6 -0.4 6 5.6 -0.4

10 5 5.7 0.7 5 5.6 0.6 4 5.6 1.6

11 6 6.0 0.0 6 5.9 -0.1 5 5.8 0.8

12 5 6.0 1.0 5 5.9 0.9 4 5.8 1.8

13 6 6.0 0.0 6 5.9 -0.1 5 5.8 0.8

14 7 5.7 -1.3 6 5.7 -0.3 5 5.6 0.6

15 5 5.7 0.7 5 5.7 0.7 5 5.6 0.6

16 5 5.6 0.6 5 5.6 0.6 4 5.6 1.6

17 6 5.7 -0.3 5 5.7 0.7 5 5.6 0.6

18 6 5.9 -0.1 5 5.8 0.8 4 5.7 1.7

19 6 5.6 -0.4 6 5.6 -0.4 5 5.5 0.5

20 6 5.6 -0.4 6 5.6 -0.4 5 5.6 0.6

21 3 3.9 0.9 3 3.5 0.5 3 3.0 0.0

22 4 4.9 0.9 4 4.7 0.7 3 4.4 1.4

23 5 4.9 -0.1 5 4.7 -0.3 4 4.4 0.4

24 4 5.1 1.1 4 4.9 0.9 4 4.7 0.7

25 4 3.0 -1.0 4 3.0 -1.0 4 3.0 -1.0

26 5 3.5 -1.5 5 3.0 -2.0 4 3.0 -1.0

27 5 5.4 0.4 4 5.3 1.3 4 5.2 1.2

28 4 3.0 -1.0 3 3.0 0.0 3 3.0 0.0

29 6 3.0 -3.0 6 3.0 -3.0 5 3.0 -2.0

30 6 5.5 -0.5 6 5.4 -0.6 5 5.3 0.3

31 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

32 6 5.7 -0.3 5 5.7 0.7 5 5.7 0.7

33 4 5.0 1.0 4 4.8 0.8 4 4.6 0.6

34 4 5.7 1.7 3 5.7 2.7 3 5.7 2.7

35 4 5.7 1.7 3 5.7 2.7 3 5.6 2.6

36 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

37 4 3.9 -0.1 3 3.5 0.5 3 3.0 0.0

38 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

39 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

40 4 4.8 0.8 4 4.6 0.6 3 4.3 1.3
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Table 3: Accuracy of Bridge Condition Predictions by Markov Method

Bridge
Number

Actual
Rating
in 1999

(A)

Predicted
Rating
in 1999

(B)

Error
(B-A)

Actual
Rating
in 2001

(C)

Predicted
Rating
in 2001

(D)

Error
(D-C)

Actual
Rating
in 2003

(E)

Predicted
Rating
in 2003

(F)

Error
(F-E)

1 6 5.7 -0.3 6 5.4 -0.6 5 5.1 0.1

2 8 7.7 -0.3 7 7.4 0.4 6 7.2 1.2

3 4 3.6 -0.4 3 3.1 0.1 3 3.0 0.0

4 5 5.7 0.7 5 5.4 0.4 5 5.1 0.1

5 4 4.7 0.7 4 4.0 0.0 3 3.4 0.4

6 7 7.7 0.7 7 7.4 0.4 7 7.2 0.2

7 4 3.6 -0.4 4 3.3 -0.7 3 3.0 0.0

8 5 4.7 -0.3 4 4.1 0.1 3 3.3 0.3

9 6 5.7 -0.3 6 5.4 -0.6 6 5.1 -0.9

10 5 4.7 -0.3 5 4.4 -0.6 4 4.1 0.1

11 6 5.6 -0.4 6 5.2 -0.8 5 4.8 -0.2

12 5 4.7 -0.3 5 4.4 -0.6 4 4.1 0.1

13 6 5.7 -0.3 6 5.4 -0.6 5 5.1 0.1

14 7 6.8 -0.2 6 6.6 0.6 5 6.3 1.3

15 5 5.7 0.7 5 5.4 0.4 5 5.1 0.1

16 5 4.7 -0.3 5 4.4 -0.6 4 4.1 0.1

17 6 5.7 -0.3 5 5.3 0.3 5 4.9 -0.1

18 6 5.7 -0.3 5 5.4 0.4 4 5.1 1.1

19 6 5.8 -0.2 6 5.3 -0.7 5 4.8 -0.2

20 6 5.7 -0.3 6 5.4 -0.6 5 5.1 0.1

21 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

22 4 3.6 -0.4 4 3.3 -0.7 3 3.0 0.0

23 5 4.6 -0.4 5 4.2 -0.8 4 3.8 -0.2

24 4 3.6 -0.4 4 3.2 -0.8 4 3.0 -1.0

25 4 3.6 -0.4 4 3.2 -0.8 4 3.0 -1.0

26 5 4.7 -0.3 5 4.3 -0.7 4 4.0 0.0

27 5 4.7 -0.3 4 4.4 0.4 4 4.1 0.1

28 4 3.6 -0.4 3 3.3 0.3 3 3.0 0.0

29 6 5.7 -0.3 6 5.4 -0.6 5 4.9 -0.1

30 6 5.7 -0.3 6 5.6 -0.4 5 5.1 0.1

31 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

32 6 5.7 -0.3 5 5.4 0.4 5 5.1 0.1

33 4 3.6 -0.4 4 3.3 -0.7 4 3.0 -1.0

34 4 3.6 -0.4 3 3.3 0.3 3 3.0 0.0

35 4 3.6 -0.4 3 3.3 0.3 3 3.0 0.0

36 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

37 4 3.6 -0.4 3 3.3 0.3 3 3.0 0.0

38 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

39 3 3.0 0.0 3 3.0 0.0 3 3.0 0.0

40 4 3.5 -0.5 4 3.0 -1.0 3 3.0 0.0
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Figure 4: Condition Rating Prediction Errors (1999)

 

Figure 5: Condition Rating Prediction Errors (2001)

Figure 6: Condition Rating Prediction Errors (2003)
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Figure 7: Average Prediction Errors

Figure 8: Standard Deviations of Prediction Errors
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SYSTEM OPTIMIZATION

Since bridge project selection and system benefit optimization depend on bridge conditions, the 
accuracies of bridge condition predictions would certainly affect the optimization results. As shown 
in the integer linear programming optimization model (Equations 10 through 14), available budget 
also has major impact on project selections. To analyze the effects of condition predictions on bridge 
system optimization, the optimization program was run based on the actual condition ratings and 
the condition predictions from the two prediction models. In addition, to examine the effects of 
available budget, 40%, 80%, and 100% of needed budgets were used as input constraints of the 
integer linear programming.

The optimization program determines which bridges should be rehabilitated or replaced at each 
time period. The optimization results are presented in Table 4. As can be seen in the table, the 
selected bridge projects and the total expected benefits are different for actual, regression predicted, 
and Markov chain predicted condition ratings. With 100% needed budget, all of the 40 bridges 
are selected in the six-year period for each of the three sets of condition ratings.  However, the 
sequences of the bridges to be rehabilitated or replaced are different. With sufficient budget, the total 
benefit values are 409,642, 417,476, and 413,805 for actual, regression predicted, and Markov chain 
predicted condition ratings, respectively. With 80% and 40% needed budgets, each optimization 
selects less than 40 bridges because of the insufficient amount of funds. As a result, the maximized 
system benefits under insufficient funds are also different for the three sets of condition ratings as 
shown in Table 4. The results in the table indicate that the total system benefits fall for all of the 
three conditions as the available budget decreases. The function of the optimization program is to 
maximize the total benefit based on the predicted bridge conditions with the limited budget.

The total benefits shown in Table 4 are plotted in Figure 9 to illustrate the benefit values based 
on the actual, regression predicted, and Markov predicted condition ratings.  The figure indicates 
that, compared with the regression based total benefits, the Markov based total benefits are closer 
to the actual total benefits. If the total benefit based on the actual condition rating is called the “true 
benefit,” the benefit deviation can be defined as the difference between the optimized total benefit 
and the true benefit. A positive benefit deviation represents an overestimate of system benefit and 
a negative value means an underestimate of system benefit.  For example, with a 100% needed 
budget, the true benefit is 409,642, the benefit deviation for the polynomial regression predictions 
can be calculated as 417,476-409,642=7,834, and for the Markov chain predictions, 413,806-
409,642=4,163. That is, the optimization based on regression predictions resulted in greater benefit 
deviation from the true benefit than the Markov chain predictions. The benefit deviations are shown 
in Figure 10.  As depicted in Figure 10, as the budget increases, the magnitude of benefit deviation 
for each optimization decreases.  In all cases, the optimizations based on the regression predictions 
generate greater magnitudes of benefit deviations than those based on the Markov chain predictions.  
In other words, the optimization based on Markov chain predictions would result in more accurate 
and more realistic system benefits and project selections.
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Table 4: Project Selections and System Benefits with Different Available Budgets

Time
Optimization Results with 100% Needed Budget

Bridges Selected Using 
Actual Rating

Bridges Selected Using 
Regression Predicted Rating

Bridges Selected Using 
Markov Predicted Rating

1998, 
1999

Bridge Numbers:
1, 17, 20, 24, 30, 34

Bridge Numbers:
1, 3, 5, 6, 7, 8, 13, 14, 15, 16, 
17, 18, 19, 20, 24, 25, 26, 31, 

32, 33, 38, 39

Bridge Numbers:
1, 3, 5, 6, 7, 8, 13, 14, 15, 16, 
17, 18, 19, 20, 24, 25, 26, 31, 

32, 33, 38, 39

2000, 
2001

Bridge Numbers:
3, 5, 6, 7, 8, 10, 13, 14, 15, 

16, 18, 19, 23, 25, 26, 31, 32, 
33, 37, 38, 39

Bridge Numbers:
2, 10, 21, 23, 29, 34, 35

Bridge Numbers:
4, 10, 12, 21, 23, 29, 30, 35

2002, 
2003

Bridge Numbers:
2, 4, 9, 11, 12, 21, 22, 27, 28, 

29, 35, 36, 40

Bridge Numbers:
4, 9, 11, 12, 22, 27, 28, 30, 36, 

37, 40

Bridge Numbers:
2, 9, 11, 22, 27, 28, 34, 36, 37, 

40
Total Benefit = 409,642 Total Benefit = 417,476 Total Benefit = 413,805

Time
Optimization Results with 80% Needed Budget

Bridges Selected Using 
Actual Rating

Bridges Selected Using 
Regression Predicted Rating

Bridges Selected Using 
Markov Predicted Rating

1998, 
1999

Bridge Numbers:
6, 7, 13, 14, 15, 16, 19, 20, 
24, 25, 26, 31, 32, 33, 38

Bridge Numbers:
6, 7, 13, 14, 15, 16, 19, 20, 24, 

25, 26, 31, 32, 33, 38

Bridge Numbers:
7, 13, 14, 15, 16, 18, 19, 20, 24, 

25, 26, 31, 32, 33, 38

2000, 
2001

Bridge Numbers:
1, 3, 5, 8, 17, 23, 29, 30, 

37, 39

Bridge Numbers:
1, 2, 3, 8, 17, 18, 23, 29, 37, 38

Bridge Numbers:
1, 3, 4, 5, 6, 8, 10, 11, 12, 17, 

23, 29, 30, 34, 39

2002, 
2003

Bridge Numbers:
2, 4, 9, 10, 11, 12, 21, 27, 28, 

34, 35, 40

Bridge Numbers:
4, 5, 10, 11, 12, 21, 27, 28, 30, 

34, 35, 39, 40

Bridge Numbers:
2, 21, 27, 28, 35, 37, 40

Total Benefit = 391,904 Total Benefit = 378,206 Total Benefit = 397,163

Time
Optimization Results with 40% Needed Budget

Bridges Selected Using 
Actual Rating

Bridges Selected Using 
Regression Predicted Rating

Bridges Selected Using 
Markov Predicted Rating

1998, 
1999

Bridge Numbers:
6, 7, 13, 14, 15, 16, 18, 19, 

26, 31, 32, 33, 38

Bridge Numbers:
6, 13, 14, 15, 16, 18, 19, 20, 

26, 31, 32, 33, 38, 39

Bridge Numbers:
6, 7, 13, 14, 15, 16, 18, 19, 26, 

31, 32, 33, 38

2000, 
2001

Bridge Numbers:
24, 25

Bridge Numbers:
24, 25

Bridge Numbers:
1, 3, 4, 8, 10, 12, 17, 20, 25, 

30, 39
2002, 
2003

Bridge Numbers:
1, 3, 9, 17, 20, 23, 30

Bridge Numbers:
1, 3, 7, 8, 23, 30

Bridge Numbers:
2, 5, 11, 24, 34, 35

Total Benefit = 319,905 Total Benefit =259,932 Total Benefit = 310,996
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Figure 9: System Benefits with Different Available Budgets

Figure 10: Benefit Deviations with Different Available Budgets

CONCLUSIONS

It is demonstrated that the Markov chain method yields more accurate condition predictions than 
the polynomial regression method. The accuracy of condition prediction affects the optimization 
results greatly, in terms the number of selected projects and their schedules as well as the total 
system benefit. A less accurate condition prediction will consequently produce a greater benefit 
deviation from the true system benefit.  It is essential for a bridge management system to have a 
capability to provide highly accurate condition predictions. Otherwise, the optimization techniques 
would not provide meaningful results that would truly maximize the system benefits.  Although this 
study focused on bridges, the study results and findings can also be applied in similar areas, such as 
pavement management systems and other transportation infrastructure management systems.

The results of this paper were obtained using Indiana bridge condition data. Although the author 
believes that the Markov method should produce better bridge condition predictions in general, the 
findings from this study should not be generalized without validation with bridge data from other 
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states. Nonetheless, the analysis method discussed in this paper could be used by other highway 
agencies to choose a more accurate estimation technique.
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