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Effects of Whistle-Blowing Bans on
Accidents at Gated Rail-Highway
Crossings: The Northeastern lllinois

Experience

This paper examines the effect of whistle-blowing bans on accidents at gated rail-highway
public crossings in the Chicago metropolitan region. The statistical analysis show that it is
rather misleading to unconditionally associate whistle bans with accident incidence and higher
collision frequencies of rail-highway crossings while ignoring other factors or combinations
of factors that are probably more relevant to the operational characteristics of the crossings.
A deeper one delves into the interactive effects of crossing-specific characteristics on the num-
ber of accidents, the more the impact of individual factors becomes confounded so that inter-
action effects may even negate the effects of individual factors.

by Paul Metaxatos, P.S. Sriraj, Siim Sé6t, Joseph DiJohn

INTRODUCTION

Accidents involving trains and highway
vehicles have been a major source of concern
for the Federal Railroad Administration
(FRA). The national average number of such
colli-sions per year in the mid-1990s was
about 4,000 at all rail crossings in the nation
(USDOT/FRA, 2000a). The average number
of deaths resulting from these collisions has
been about 400 per year. The FRA has
concluded these numbers warrant immediate
action to mitigate and eliminate the reasons
for the collisions.

Since the early 1990s the FRA has studied
the impact that train whistles have on safety
at rail crossings. Initially conducted in
Florida, this study was soon conducted across
the nation to evaluate the type of impact
whistle bans have on accidents. In 1984,
Florida authorized local governments to ban
the nighttime use of whistles by trains ap-
proaching rail crossings. This resulted in a
proliferation of bans against whistle blowing
at rail crossings in Florida. Many local
jurisdictions passed ordinances banning

locomotive horns. In 1990, an FRA study on
the effect of the whistle bans in Florida on
the accidents at rail crossings showed that
there were almost three times more collisions
after the whistle bans were established. Thus,
in 1991, the FRA issued an emergency order
to end whistle bans. The Florida study also
prompted the FRA to study the effect of
whistle bans on accidents on a nation-wide
basis. The results of this study and the Florida
study were published in four reports
(USDOT/FRA, 1995a and 1995b; USDOT/
FRA, 2000a and 200b). These reports point
out the significant impact that train whistles
have in reducing the number of accidents at
rail crossings. The FRA found that crossings
with whistle bans averaged 84% more
collisions than crossings that permit whistle
blowing. The only exception to this finding
was in the six-county northeastern Illinois
Chicago region where collisions were 16%
less frequent.

Moreover, the use of whistles at cross-
ings, at the time these studies were conducted,
was not governed by a national mandate and
instead was dependent on local laws. Con-
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sequently, rail crossings within a state often
had different stipulations regarding the
blowing of whistles.

The FRA’s findings gave local and
municipal agencies in the Chicago area reason
to keep their own operating policies regarding
whistle blowing unchanged while awaiting
the final ruling from the FRA. Follow-up
studies were performed at the behest of many
local agencies and comments have been sent
to the FRA. These comments supported
exemp-tions from blowing locomotive horns
at crossings where accident experience was
under a specified threshold.

This paper, motivated by the debate
outlined above, examines whether collision
rates at gated crossings in the Chicago region,
which have honored (this qualification will
be justified later in the discussion) whistle
bans, are statistically different than the
collision rates at crossings where the train
whistle is routinely sounded (no-ban). The
overall objective of the paper is to develop
an understanding of crossing-specific factors
that may have an impact on the number of
collisions in Chicago gated rail-highway
crossings.

The findings in this paper, applicable
only to Chicago-area gated crossings, show
that it is rather misleading to unconditionally
associate whistle bans with accident inci-
dence and higher collision frequencies ofrail-
highway crossings while ignoring other
factors or combinations of factors that are
probably more relevant to the operational
characteristics of the crossings. The deeper
one delves into the interactive effects of
crossing-specific characteristics on the
number of accidents, the more the impact of
individual factors becomes confounded and
interaction effects may even negate the effects
of individual factors.

DATA ISSUES

Several types of information were needed to
carry out this research: a rail-highway
crossings inventory; accident data and
whistle-ban status at those crossings; and
vehicular and train traffic by crossing. The
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data sources, data reduction and data limi-
tations are discussed in this section.

Data Sources

This research utilized available data sources
from the Chicago Area Transportation Study
(CATS) as follows: (a) The crossings database
was developed from the Federal Inventory for
Northeast Illinois. The database has 1,952
observations (crossings) and 128 crossing-
specific variables with multiple missing
values. The relevant set of crossings for this
study is 805 gated crossings within the six-
county area. (b) The 1988-1999 accident
inventory for the State of Illinois has 3,318
observations (accidents) and 203 variables
(also with many missing values) with
collision-specific as well as crossing-specific
information (e.g., vehi-cular and train traffic).
The relevant data set for this study is 561
collisions at 295 crossings within the six-
county area. Both fatal and non-fatal
accidents are included. (¢) An inventory of
gated crossings with confirmed 24-hour
whistle bans. The relevant set for this study
is 290 crossings.

Data sources used in this research are
believed to be the latest available for the study
area. Note, however, the inventory update
process in the individual databases from the
combined data set is voluntary and rather
slow. Laffey (2000) comments: “The mean
age of an inventory record is 11 years while
the median age is 13 years.” It is regrettable
that more contemporary crossing data are
unavailable, but the authors do not have the
resources to generate their own crossing data.

Data Reduction

This analysis is based on gated, at-grade
railroad crossings in the Chicago region. If
there is any increased risk of collision
associated with train-whistle bans, it should
be apparent on a regional level.

This research has analyzed the same types
of collisions as the FRA Updated Analysis of
Train Whistle Bans (USDOT/FRA, 2000b).
In the FRA analysis, accidents that involved
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collisions beyond the fourth rail car, and
collisions without a vehicle driver were not
included. These types of collisions were
determined to have no association with the
sounding of a train whistle. Accidents that
involved pedestrians were not included since
there is no accident exposure data for
pedestrians.

This research has included collisions
during the 12-year period from 1988 through
1999, as opposed to the FRA use of only a
five-year span of data from 1992 through
1996. Any association of collisions with
whistle bans should be evident over this 12-
year period.

Crossings that were determined to have
changed the warning device type over the
study period were dropped from the analysis.
This includes situations such as flashing lights
replaced by automatic gates. The FRA
analysis also dropped crossings that changed
warning device status.

The crossing file used in the study is
different from the one used in the FRA’s
Updated Analysis of Train Whistle Bans
(USDOT/FRA, 2000b). Thus the staff at
CATS updated the crossing file to eliminate
aban-doned crossings.

A second difference concerns how
whistle-ban status is defined. Many crossings
are listed as having a whistle ban, but trains
routinely sound their horns anyway. Data
were collected by the staff at CATS to
determine which crossings in the Chicago area
have whistle bans that are honored by the
railroads. The honored whistle-ban crossings
are the only crossings that are considered to
have a whistle ban in this analysis.

Crossings that have missing or zero
values for daily train volume or annual
average daily (vehicular) traffic were elim-
inated from the analysis. The FRA accident
prediction formula (APF) uses these two
variables as factors, but the formula is
designed to return a factor of one if infor-
mation is missing. Otherwise, it returns a very
small number corresponding to the very low
number of expected collisions per year per
crossing without train or vehicle traffic.
Although not zero, the very low number may

still have essentially the same meaning as a
zero result, and may flag closed or abandoned
crossings.

In view of the above, the previous three
data sets were combined into one database
with 805 records (gated crossings). The
number of collisions per crossing was
computed and combined with the other
crossing-specific information.

Data Limitations

It is important to note that data limitations are
common in this type of study. First, the lack
of the date that the whistle-ban policy was
enacted at a particular crossing makes it
impossible to determine whether the policy
was in effect at the time of the collision at
that crossing. Given the resources of the
study, it was impractical to investigate archival
data (e.g., locomotive’s event recorders) to
determine whether a train’s horn was sound-
ing at the time of a collision. Moreover, it
was not possible to resolve whether the driver
heard the horn sounding or was distracted
(e.g., music, passengers, etc.).

Secondly, the level of the annual average
daily traffic (AADT) for each crossing is an
average value that is not time-of-day specific.
Additionally, in this study the AADT value is
only available for 1999. AADT may have
subsequently changed, but the authors do not
have the resources to generate their own up-
to-date data on a crossing-specific basis. As
a result, we need to assume that vehicular
traffic has not changed dramatically over the
course of the study period and, furthermore,
that the average value is close enough with
the prevalent level of traffic at the date and
time of the collision. A similar observation
pertains to the number of daily trains, although
this figure should be more stable over time
than vehicular traffic.

A third observation is related to the fact
that driving around a lowered gated crossing,
probably the most frequent cause for such
accidents, involves a host of factors not
captured in the collision data available.
Clearly, factors such as the presence of
alcohol; the age and gender of the driver;
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potential social pressure from the cars behind,;
the time of day; and the visual sight distance
and angle that the road meets the track need
to be controlled for in a larger-scale study.

EXPLORATORY ANALYSIS

The impact of whistle bans, daily train
volume, annual average daily traffic (AADT),
exposure and risk incidence is now examined.
Except for the whistle-ban factor, the other
factors are typically included in all method-
ologies used to predict collision frequencies
or to prioritize rail-highway crossing safety
im-provements (Elzohairy and Benekohal,
2000). In this manner, a meaningful com-
parison between whistle-ban and whistle-
blowing crossings in terms of collision
incidence and collision variability can be
made. Note that in this paper, the terms
‘collisions’ and ‘accidents’ are used inter-
changeably. A lengthier technical discussion
is available elsewhere (Metaxatos et al.,
2001).

Annual Distribution of Accidents

The number of collisions in the study area has
decreased almost every year in the 1988-1999
period. A chi-square analysis did not reveal
any significant systematic variation in the
annual distribution of the number of accidents
between whistle-ban and whistle-blowing
crossings.

Whistle-Ban Status and Collisions

At first, the association between whistle-ban
status and collision incidence is examined
without controlling for other factors of
interest. In this sample of 805 crossings all
the sampling assumptions for the (Pearson)
chi-square statistic are met. The value of the
statistic, 14.19, is clearly significant at the
0.001 level. Indeed, collisions occurred at
45% (131 out of 290) of the whistle-ban
crossings, but only at 32% (164 out of 515)
of the crossings without 24-hour whistle bans.

The previous analysis can be repeated to
examine the association between ban status
and collision frequencies. The chi-square
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statistic is 19.76, again significant at the 0.001
level. Indeed, 61% of the whistle-ban
crossings (249 out of 408) had collisions,
while only 47% (312 out of 663) of the
whistle-blowing crossings had collisions.

Whistle-Ban Status and Collisions
Controlling for Additional Factors

The previous analysis implies that, at a
first level of analysis and if no other factors
are taken into account, there appears to be a
higher collision frequency at whistle-ban
crossings. However, it is reasonable to
assume that this association may have been
affected by a number of factors. Therefore,
the impact of factors such as train volume,
annual average daily traffic (AADT), expo-
sure, and a measure based on the FRA
Accident Prediction Formula needs to be
examined.

The Impact of Train Volume. The train
volume values have been placed into ten
groups with approximately the same number
of crossings called deciles' (Table 1). The
majority of crossings with high train volume
in the Chicago region have whistle bans.
Indeed, almost 90% of the whistle bans are
enforced at crossings with 50 or more daily
trains. On the contrary, almost 90% of the
whistle-blowing crossings have less than 50
daily trains. Moreover, almost 90% of
collision-prone crossings are associated with
50 or more daily trains and 24-hour whistle
bans. In a similar fashion, more than 85% of
the collisions occur at whistle-ban cross-ings
with 50 or more trains. Furthermore, higher
collision frequencies are associated with
higher train volumes and, in general, have a
lower co-efficient of variation at higher train
volumes.

To avoid the effect of a potential spurious
correlation between whistle-ban crossings and
collisions, the effect of train volume needs to
be accounted for. The Mantel-Haenszel
results? for the stratified analysis give a test
statistic® Q .., ., = 7.667, which is significant
(p = 0.005).* Controlling for train volume,
collision occurrence is associated with
whistle-ban crossings. Similarly, controlling
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Table 1: Number of Crossings and Collisions by Daily Train Traffic

Daily Collisions per
Train Number of Crossings Number of Crossings Number of Crossings Crossing
Traffic With Collisions (# Acc.) Without Collisions (totals)
Std.
NoBan Ban Total NoBan Ban Total NoBan Ban Total Mean Dev.
1-5 72 2 74 7(8) 1(1) 8(9) 65 1 66 0.12 036
6-10 85 2 87 16 (24) 2(4) 18 (28) 69 0 69 032 070
11-18 88 1 89 29 (47) 1(1) 30 (48) 59 0 59 053 091
20-32 72 11 83 27 (43) 5(10) 32(53) 45 6 51 0.63 098
33-41 72 2 74 25 (35) 24 27 (39) 47 0 47 052 0381
42-49 56 19 75 18 (48) 6(12) 24 (60) 38 13 51 080 220
50-63 24 34 58 12(34) 2141 33 (75) 12 13 25 129 247
64-75 20 77 97 12(25) 32(67) 44 (92) 8 45 53 094 143
76-88 17 71 88 10(22) 19(33) 29 (55) 7 52 59 0.62 1.27
89-190 9 71 80 8(26) 42(76) 50(102) 1 29 30 1.27 1.36
Total 515 290 805 164 131 295 351 159 510
(312) (249) (561)

Source: Chicago Area Transportation Study — Analysis by authors

for train volume, whistle-ban crossings are
associated with higher number of collisions
(Qegpy = 5022, p = 0.025). The last
association is significant at the 0.05 level but
not at the 0.01 level.

The Impact of AADT. The AADT values
have been grouped into 10 deciles (Table 2).
Whistle-ban crossings are more often en-
countered at locations with relatively lower
vehicular traffic while higher vehicular traffic
is more prevalent at no-ban crossings.
Moreover, 70% of collision-prone whistle-
blowing crossings and a little more than 50%
of whistle-ban crossings are associated with
higher AADT values (more vehicular traffic).

In addition, more than 80% of the collisions
occur at whistle-blowing crossings associated
with higher AADT values; the same is true
for a little over 60% of the collisions at
whistle-ban crossings. Finally, on average,
more collisions with a lower coefficient of
variation occur at high-traffic-volume
crossings.

The Mantel-Haenszel results for the
stratified analysis give a test statistic Q ., . =
22.603, which is strongly significant (p <
0.0001). Controlling for AADT, collision
occurrence is associated with whistle-ban
crossings. Similarly, controlling for AADT,
whistle-ban crossings are associated with a

Table 2: Number of Crossings and Collisions by Annual Average Daily Traffic

Annual Collisions per
Average Number of Crossings Number of Crossings Number of Crossings Crossing
Daily with Collisions (# Acc.) Without Collisions _(totals)
Traffic Std.
(vehicles) NoBan Ban Total NoBan Ban Total NoBan Ban Total Mean Dev.
50-250 57 31 88 7(11) 12(23) 19(34) 50 19 69 0.38 0.87
259475 27 33 60 5(5) 8(1l) 13(16) 22 25 47 026 0.54
500-800 56 39 95 11(15) 13(19) 24(34) 45 26 71 035 072
830-2050 42 37 79 7(9) 13(22) 20(31) 35 24 59 039 0.83
2100-4200 47 33 80 15(20) 13 (24) 28(44) 32 20 52 055 0.85
4300-7000 58 25 83 16(26) 9(17) 25(43) 42 16 58 0.51 092
7200-10370 58 19 77 27(52) 13(17) 40(69) 31 6 37 0.8 1.32
10400-14300 52 31 83 24 (48) 20(39) 44(87) 28 11 39 1.04 1.29
14500-21900 57 23 80 33 (88) 14 (36) 47(124) 24 9 33 1.55 2.88
22000-55000 61 19 80 19 (38) 16(41) 35(79) 42 3 45 0.98 149
Total 515 290 805 164 131 295 351 159 510
(312) (249) (561)

Source: Chicago Area Transportation Study — Analysis by authors
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higher number of collisions (O, = 41.193,
p <0.0001).

The Impact of Exposure. The previous
observations imply a potential multiplicative
effect of train and vehicular volumes on
collision frequencies. The values for this
multiplicative factor, defined as the product
of AADT and the number of daily trains, have
been grouped into ten deciles that comprise
different levels of exposure (Table 3).

The multiplicative effect of the train
traffic and AADT decile distribution for
whistle-ban and whistle-blowing crossings is
evident. Whistle-blowing crossings are more
prevalent at low and above-average levels of
exposure while whistle-ban crossings prevail
at the below-average and high end of exposure
levels. Moreover, collision-prone whistle-ban
crossings are more prevalent at the upper two
deciles of exposure, while whistle-blowing
collision-prone crossings are more prevalent
at the seventh and eighth deciles. A similar
observation holds for the distribution of the
percentage of collisions. Finally, higher
collision frequencies with a lower coefficient
of variation are seemingly associated with
higher levels of exposure.

The Mantel-Haenszel results for the
stratified analysis give a test statistic Q .., =

14,935, which is strongly significant (p =
0.0001). Controlling for the level of exposure,
collision occurrence is associated with
whistle-ban crossings. Similarly, controlling
for the level of exposure, whistle-ban cross-
ings are associated with higher number of
collisions (Q ., = 20.592, p < 0.0001).
The Impact of Risk Incidence. The FRA
forecasts collisions at rail-highway crossings
using a regression model, the Accident
Prediction Formula (APF). The model
consists of three parts: an unnormalized
accident prediction from the basic formula
(equation 1); an adjustment to include
collision histories; and a warning-specific
normalizing constant that allows total
collisions in the base year to equal forecast
collisions. In its studies, the FRA has used
the first part of its model to group gated
crossings by increasing risk of collisions.
Without the constants that are used to adjust
total collisions, the results of the formula do
not represent actual collisions, but the results
serve as a tool for ranking crossings by
increasing risk. In this study, the first part of
the APF for gated crossings is taken to
represent the level of risk and is given by
equation 1.

Table 3: Number of Crossings and Collisions by Range of Exposure

Range of Collisions per
Exposure Number of Crossings Number of Crossings Crossing
(in 000s) Number of Crossings with Collisions (# Acc.) Without Collisions (totals)
No No No Std.
Ban Ban Total Ban Ban Total Ban Ban Total Mean Dev.
0.177-6.45 73 7 80 44 3(8) 7(12) 69 4 73 0.15 0.57
6.8-15.6 56 20 76 11 (16) 9(16) 20(32) 45 11 56 0.42 0.83
16-26.468 51 34 85 13(17) 9(13) 22(30) 38 25 63 0.35 0.71
26.6-50 44 38 82 9(12) 12(16) 21(28) 35 26 61 0.34 0.65
50.4-102.4 51 29 80 10 (15) 6(7) 16(22) 41 23 64 0.27 0.61
104.4- 54 25 79 15(26) 13(27) 28(53) 39 12 51 0.67 1.14
172.5
172.8- 63 19 82 27 (40) 6(12) 33(52) 36 13 49 0.63 0.90
306.9
308-500 59 22 81 33(60) 10(18) 43(78) 26 12 38 0.96 1.18
500.5-924 38 42 80 21(43) 23(35) 44(78) 17 19 36 0.97 1.29
959.4- 26 54 80 21(79) 40(97) 61 (176) 5 14 19 220 295
3822
Total 515 290 805 164 131 295 351 159 510
(312) (249) (561)

Source: Chicago Area Transportation Study — Analysis by authors. Exposure is defined as the product

between AADT and number of trains.
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02942 0.1781
} x

(1) RISK ={[(4ADT x TRAINS)+0.2]/0.2 x[(DAY _THRU _TRAINS +0.2)/0.2]

¢ MAIN _TRACKS x 01512 (LANES - 1) x 0.1420

where, RISK is the risk score, AADT is the
annual average daily vehicular traffic,
TRAINS is the number of trains per day,
DAY THRU TRAINS is the number of
through trains per day during daylight,
MAIN_TRACKS is the number of tracks, and
LANES is the number of highway lanes.

Whistle-ban crossings are, in general,
more prevalent at high-risk crossings com-
pared to whistle-blowing crossings that are
more prevalent at low-risk crossings. A
similar observation holds for the distribution
of collision-prone crossings and the dis-
tribution of collision frequencies in those
crossings. Moreover, higher collision
frequencies with a lower spread around the
mean occur at higher risk crossings.

The values for the level of risk as
computed above have been placed into ten
deciles (Table 4) and comprise the ten risk
groups. The Mantel-Haenszel results for the
stratified analysis give a test statistic Q. , =
5.888, which s strongly significant (p=0.01).

Controlling for the level of risk, collision
occurrence is associated with whistle-ban
crossings. Similarly, controlling for the level
of risk, whistle-ban crossings are associated
with higher number of collisions (Q,, =
8.582, p =0.003).

The Impact of Combinations of Factors.
The previous sections explored the associa-
tion between whistle bans and collisions con-
trolling for individual factors, such as train
traffic, AADT, level of exposure, and level
of risk. This section presents the results,
summarized in Table 5, from a Mantel-
Haenszel stratified analysis for various
combinations of these factors.

The Mantel-Haenszel procedure poten-
tially removes the confounding influence of
explanatory variables that comprise the
stratification and provides greater power to
detect an association by comparing like
objects. The procedure requires minimal
assumptions and thus the conclusions of the

Table 4: Number of Crossings and Collisions by Risk Group

Risk Collisions per
Group Number of Crossings Number of Crossings Crossing
Number of Crossings with Collisions (# Acc.) Without Collisions (totals)
No No No Std.
Ban Ban Total Ban Ban Total Ban Ban Total Mean Dev.
13.3-52.3 76 4 80 6(7) 309 9(12) 70 1 71 0.15 0.45
52.5-80.5 75 6 81 11 (15) 1(4) 12(19) 64 5 69 0.23 0.67
80.8-107.6 63 17 80 11 (16) 5() 16(23) 52 12 64 028  0.67
108.5- 35 46 81 7(7) 12(17) 19(24) 28 34 62 029 0.62
135.0
135.1- 55 25 80 14(17) 11 (18) 25(35) 41 14 55 0.43 0.76
175.2
175.6- 52 29 81 18 (30) 9(13) 27(43) 34 20 54 0.53 0.90
2143
214.5- 52 29 81 29 (44) 6(11) 35(55) 23 23 46 0.67 1.01
272.7
272.9- 45 35 80 21 (33) 21(35) 42(68) 24 14 38 0.85 0.98
342.1
342.2- 37 44 81 25(54) 27(62) 52(116) 12 17 29 1.43 1.59
458.2
460.3- 25 55 80 22(89) 36(77) 58(166) 3 19 22 2.07 2.93
1036.7
Total 515 290 805 164 131 295 351 159 510
(312) (249) (561)

Source: Chicago Area Transportation Study — Analysis by authors. Risk is defined by the value
obtained for each crossing based on the APF (equation 1).
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Table 5: Whistle-Ban Impacts on Collisions Controlling for Different Factor Combinations

Controlling for Factor Combination

Train traffic and AADT

Train traffic and level of exposure

Train traffic and level of risk

AADT and level of exposure

AADT and level of risk

Level of exposure and level of risk

Train traffic, AADT and level of exposure
Train traffic, AADT and level of risk
AADT, level of exposure and level of risk

Train traffic, AADT, level of exposure and level of risk

Collision Incidence Higher Number of
Collisions

Qesmu Probability*  Qcsmua  Probability
8.072 0.004* 13.199 0.0003*
7.009 0.008* 7.936 0.004*
1.226 0.268 2.113 0.146
3.483 0.062 9.583 0.002*
4.771 0.028** 9.534 0.002*
3.808 0.051 2.255 0.133
0.021 0.884 0.0006 0.981
0.412 0.520 0.527 0.467
3.252 0.071 6.290 0.012%*
0.014 0.903 0.001 0.974

“Probability of obtaining a higher test-statistic value under the null hypothesis of no association; *signifi-
cant at the 0.01 level; **significant at the 0.05 level. Source: Chicago Area Transportation Study —

Analysis by authors

analysis may be restricted to the study
population at hand, versus inference to a larger
population.

In Table 5, the first column displays the
factor combination being controlled for. The
second and third columns present, respec-
tively, the chi-square statistics (0 ,,,, values)
and associated probabilities for testing the
impact of whistle bans on collision incidence,
controlling for the particular factor com-
bination. Finally, the fourth and fifth columns
present, respectively, the test statistic value
and associated probability for testing the
impact of whistle bans on collision fre-
quencies, again, controlling for that particular
factor combination.

The results in Table 5 show a statistically
significant association between whistle bans
and collision incidence after controlling for
three combinations of factors: train traffic and
AADT; train traffic and level of exposure; and
AADT and level of risk. There is also a
statistically significant association between
whistle bans and higher number of collisions
(last two columns in Table 5) after controlling
for the same factors. Three additional
combinations of factors that, when controlled
for, render the association significant are:
AADT and level of exposure; AADT and level
of risk, and AADT, level of exposure and level
of risk.

Interestingly enough, controlling for two
factor combinations, namely, train traffic,
AADT and level of exposure, and train traffic,
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AADT, level of exposure, and level of risk,
render the impact of whistle bans on collision
incidence or collision frequencies non
significant. This is true with almost all
combinations of three or more factors. The
fact that AADT and level of exposure appear
almost always in all significant factor com-
binations should not be considered a factual
observation. After all, AADT, a one-time
statistical average value over the 12-year
period, serves this analysis only as a proxy of
the prevailing vehicular traffic at the time of
the collision.

In summary, the previous analysis implies
that it may be rather misleading to un-
conditionally associate whistle bans with
collision incidence and higher collision
frequencies of gated rail-highway crossings,
ignoring the synergy of a number of factors
or combination of factors that are probably
more relevant to the operational character-
istics of the crossings.

REGRESSION ANALYSIS

While the association between whistle bans
and collisions along with the synergistic role
of other factors has been investigated in the
previous section, the strength and direction
of the association has yet to be determined.
This section shifts the focus to statistical
models, methods aimed at describing the
nature of the association in terms of a
potentially parsimonious number of
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parameters. It is important to note at this point
that this section is not describing a new
accident prediction model. Clearly, such an
effort would require many more resources as
well as an entirely different formal approach.

Model Formulation

The customary assumption for accident data
is that they are observations of a Poisson
variable. This is well-supported by the theory
of the Poisson distribution and indeed the
Poisson distribution was originally developed
precisely for accident statistics. The Poisson
distribution is the nominal distribution for
counted data in much the same way that the
Normal distribution is the benchmark for
continuous data. The frequency distributions
(Table 6) seem to corroborate the conjecture
that the Poisson distribution is appropriate as
a first approximation.

Poisson regression has the advantage of
being precisely tailored to the discrete, highly-
skewed distributions of accident data. The
Poisson regression model gets its name from
the assumption that the dependent variable has
a Poisson distribution.

The regression model will estimate the
number of collisions at a crossing given a
number of crossing-specific explanatory
variables that are typically found in the
literature concerning rail-highway crossing
safety. These include the whistle-blowing

Table 6: Frequency Distributions of Collisions

status, the number of all types of daily trains,
the AADT value, an interaction term for the
multiplicative effect of train and vehicular
volume (level of exposure), and the level of
risk as estimated by the first part of the APF.
Recall that the risk scores from the formula
are a function of the level of exposure, the
number of daily through trains, the number
of main tracks and the number of highway
lanes. Because the level of exposure is
included in the risk score, we decided to
partition the scores intro three groups, high,
medium, and low, and treat the scores as a
discrete rather than a continuous variable. A
technical discussion on the functional form
of the model and its estimation is provided
elsewhere (Metaxatos et al., 2001).

Thus, the only concern with this method
lies with the credibility of the FRA’s APF.
However, since the FRA has been working
with and improving the APF for a long time,
one would expect that it is of adequate quality
for the purpose of the models in this paper.
Also, there is no other practical alternative to
the FRA risk measure.

Model Estimation

Assuming a linear relationship among the
(untransformed) independent variables, we
obtained initial parameter estimates. There
is undoubtedly some inter-crossing variability
in the number of collisions that cannot be

Whistle-Blowing

Whistle-Ban

All Crossings Crossings Crossings

Number of Number of Percentof = Number of Percent of = Number of  Percent of

Collisions  Crossings  Crossings  Crossings  Crossings  Crossings  Crossings

0 510 63.35 351 68.16 159 54.83
1 161 20.00 98 19.03 63 21.72
2 76 9.44 36 6.99 40 13.79
3 33 4.10 17 3.30 16 5.52
4 8 0.99 3 0.58 5 1.72
5 9 1.12 5 0.97 4 1.38
6 5 0.62 2 0.39 3 1.03
8 1 0.12 1 0.19 0 0.00
17 2 0.25 2 0.39 0 0.00

Source: Chicago Area Transportation Study — Analysis by authors
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accounted for by the Poisson model. This calls
for adjusting for overdispersion.

Two Unusual Cases

Interestingly, only the intercept and the
variable representing the risk incidence of the
crossing appear to be significant at the 0.01
level after adjusting for overdispersion.
Before the adjustment, the AADT variable
and the variable representing the exposure
factor were also significant at the 0.05 level.
Before we say more, however, we need to look
for unusual cases that do not belong in the
model. This is an important part of the
analysis because such points might suggest
de-ficiencies in the model (e.g., a missing
independent variable) or that the algebraic
form of the model is incorrect (e.g., need for
data transformations).

In view of the above, we examined the
residuals for potential outliers and influential
observations. It was expected that the two
observations (crossings) with 17 collisions
each (Table 6) would be problematic. Indeed,
upon examining the plot of standardized
deviance residuals® against the predicted
values, those two cases stand out with residual
values of more than 5. The expected average
number of collisions under the model are 1.48
and 1.52, respectively for those two cases.

The two cases involve no-ban crossings.
The first crossing (ID# 372177T) is in Wood
Dale on Irving Park Road, and the second one
(ID# 478713F) in Chicago on East 130"
Street. The first one has 46 daily trains and
the second one has 52. Recall that the average
number of collisions for the category is 0.8
for the first crossing and 1.29 for the second
one (Table 1). Both crossings experience
AADT values within the 9® decile of the
distribution (Table 2) with an 1.55 average
number of collisions for the category. The
high level of train and vehicular activity puts
both crossings in the 10™ decile on the
exposure scale (Table 3) with 2.2 average
number of collisions for the category. Finally,
both crossings score in the 10™ decile of the
risk distribution (Table 4) with 2.07 average
number of collisions for the category.
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Clearly both cases require further investi-
gation. We intend to bring both cases back
into the model later during the variable
selection stage. At this point, however, we
simply choose to eliminate these obviously
unusual points because we decided that they
should not be considered in an attempt to find
a general relationship between the average
number of collisions and the factors of
interest.

Upon deletion of the two cases, the
normal probability plot (Sen and Srivastava,
1990) has been mostly straightened out. We
now need to focus our attention to the
possibility that the algebraic form of the model
is not correct.

Data Transformations, Additional
Terms, Multicollinearity and Variable
Search

In fitting the Poisson regression model, we
have already transformed the dependent
variable to a logarithmic scale. Here, we will
examine whether there is a need to transform
the independent variables or if additional
terms involving the same independent vari-
ables would be helpful.

Component plus residual plot analysis
(Sen and Srivastava, 1990) indicated the need
for transformations of the independent
variables. We tested a number of trans-
formations and found that a transformation
between the log and the square root was most
appropriate. We chose to work with the log
transformation because the coefficients then
have a much simpler interpretation.

As we have already observed, not only
individual factors but also combinations of
factors may have an impact on the number of
collisions. This conjecture can be further
tested in the regression model by means of
additional terms representing factor com-
binations. This course of action raises the
issue of multicollinearity. The basic point is
that, if two or more independent variables are
closely related to each other the quality of the
estimates, as measured by their variances, can
be seriously and adversely affected making it
harder to get good estimates of the distinct
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effect on the dependent variable. Although
multicollinearity does not bias the co-
efficients, it does make them more unstable.
Standard errors may become large, and
variables that appear to have weak effects,
individually, may actually have quite strong
effects as a group. We could also obtain
counter-intuitive results, especially in the
signs of the coefficients (positives may
become negatives and vice versa).

We used a number of multicollinearity
diagnostics, such as tolerances, variance
inflation factors, eigenvalues and condition
numbers (Sen and Srivastava, 1990) and
tested a fairly long list of independent
variables (individual factors and factor
combinations). Subsequently, we culled the
independent variable list to obtain a more
parsimonious model that is easier to work
with, reduce the multicollinearity in the
model, and reduce the ratio of the number of
variables to the number of observations,
which is statistically beneficial. The practice
of variable search is often a matter of making
the best compromise between keeping the
standard errors and bias low and achieving
parsimony and reducing multicollinearity
(Sen and Srivastava, 1990).

Estimation Results

During variable selection, one frequently
finds, clustered around the chosen model,
other models which are nearly as good and
not statistically distinguishable. The six
different models shown in this section were
found to be comparably good candidates in
terms of measure of fit, moderate bias, and
little multicollinearity. The variable combina-
tions in the six models are because of trans-
formations of the independent variables to
address multicollinearity and heterosced-
asticity issues, as well as introduction of
second order effects. Considering that the
models estimated in this study will not be used
as tools for forecasting collision frequencies
or for prioritizing safety upgrades in cross-
ings, we will not recommend a ‘best’ model
among the six candidates.

In Table 7 we show only the significant
parameter estimates for each of the models
presented by increasing level of fit, as
measured by their deviance in column two.
Models 1 to 6 have been adjusted for
overdispersion. An estimate of the over-
dispersion is given by the ratio of the deviance
value divided by the degrees of freedom (third
column in Table 7). Parameter estimates for
the factors and factor combinations in the fifth
column are shown in the sixth column while
their standard errors are in column seven. The
95% confidence intervals for the estimated
parameters are shown in columns eight and
nine.

The scale parameter (the square root of
the dispersion parameter in Table 7) is
computed as the square root of the Pearson
chi-square divided by the degrees of freedom.
Its function is similar to the scale parameter
in linear regression, known as root mean
square error. The adjusted chi-square for each
coefficient (in column 10) is the unadjusted
coefficient divided by the scale parameter. As
with linear regression, it tests for the null
hypothesis that the parameter estimated is
zero. The probability of obtaining a higher
chi-square value is reported in column 11.
Note that the adjusted standard error of each
coefficient is the unadjusted standard error
multiplied by the square root of the scale
parameter.

The estimated parameters give the log-
odds increase/decrease (recall that the
dependent variable is logged) for every one-
unit increase/decrease in the explanatory
variable. Whenever the independent variable
has multiple levels (e.g., the ‘Ban’ variable
has two levels, yes and no; the ‘Rgroup’
variable has three levels, high, medium and
low) the comparison is made with respect to
the reference level (here, the lowest classi-
fication level is always the reference level).

Note that models 1 to 6 were also
estimated as negative binomial models with
almost no qualitative difference. Almost the
entire set of factors and factor combinations
appearing significant under the Poisson
assumption appear to be significant under the
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Table 7: Analysis of Significant Parameter Estimates

s 3 I Factors and Factor Estimate  Standard Wald 95% Chi- Pr>Chi

- 8 b Combinations* Error Confidence Limits®  Square

= 3 % = Lower Upper

Q > Bk
— =

1 62756 079 -396.38  Intercept -2.6099  0.3435 -3.2831  -1.9367 57.74  <0.0001
Ban 2.5801 0.5263 1.5487 3.6116 2404  <0.0001
Trains 0.0096 0.0038 0.0022 0.0169 6.46 0.0110
Lexpo 0.3104 0.124 0.0661  0.5546  6.20 0.0128
Ban * AADT 0.0622 0.0198 0.0235 0.1009 993 0.0016
Ban * Lexpo -0.6517  0.1917 -1.0275 -0.2759 11.55  0.0007
Dispersion
Parameter 1.5217 0.3250 1.0011 2.3128

2 62692 0.79 -395.27  Intercept -1.7381 0.2314 -2.1917 -1.2845 5640  <0.0001
Ban 2.5801 0.5263 1.5487 3.6116 24.04  <0.0001
Trains * AADT 0.0006 0.0003 0.0001  0.0011 6.17 0.0130
Rgroup(3) 1.5347 0.3061 09348  2.1346  25.14  <0.0001
Rgroup(2) 0.9325 0.2630 0.4170  1.4480 1257  0.0004
Ban * AADT 0.0507 0.0253 0.0010 0.1004 4.00 0.0454
Ban * Trains * -0.0007  0.0004 -0.0015 -0.0001 4.03 0.0447
AADT
Ban * Rgroup(2)  -0.9891 0.4204 -1.8131  -0.1651 5.53 0.0186
Dispersion
Parameter 1.5366 0.3370 09997  2.3622

3 62657 079 -395.12  Intercept -1.9645 0.2180 -2.3918  -1.5372  81.19  <0.0001
Ban 1.3747 0.3940 0.6024  2.1469 1217  0.0005
Trains 0.0137 0.0047 0.0044  0.0229 8.42 0.0037
Rgroup(3) 0.9526 0.3666 0.2340 1.6711  6.75 0.0094
Ban * Trains -0.0224  0.0661 -0.0343  -0.0105 13.62  0.0002
Ban * LAADT 04074  0.1979 0.7951 -0.0196 4.24 0.0395
Dispersion
Parameter 1.5361 0.3472 0.9862 2.3924

4 62538 0.79 -39424  Intercept -1.7085 0.4434 -2.5775 08395 14.85  0.0001
Trains * AADT 0.0008 0.0002 0.0003 0.0012 12.23  0.0005
Rgroup(3) 1.6409 0.3596 09362 2.3457  20.83  <0.0001
Rgroup(2) 0.9959 0.3000 0.4080 1.5838 11.02  0.0009
Ban * AADT 0.0531 0.0240 0.0059  0.1002  4.87 0.0273
Ban * -0.0008  0.0003 -0.0015 -0.0002 5.83 0.0158
Trains*AADT
Ban *Rgroup(2) -0.9976  0.4530 -1.8855 -0.1096 4.85 0.0277
Dispersion
Parameter 1.5413 0.3454 0.9934  2.3911

5 62396 0.78 -393.19  Intercept -2.5896 04781 -3.5267 -1.6526 29.34  <0.0001
Ban 3.4968 0.8109 1.9074  5.0862 18.59  <0.0001
Ltrains 0.3664 0.1748 0.0238  0.7089 439 0.0360
Ban * Ltrains -0.9012  0.2683 -1.4271  -0.3753  11.28  0.0008
Ban * LAADT -0.3855 0.1962 -0.7699 -0.0010 3.86 0.0494
Dispersion
Parameter 1.5477 0.3497 0.9937 24102

6 620.88 0.78 -390.18  Intercept -3.0619  0.4222 -3.8993 -2.2345 52.61 <0.0001

*Variables: Ban=Whistle-ban status; Trains=number of daily trains; Ltrains=log(Trains);
LAADT=log(AADT); Lexpo=log(Trains*AADT); Rgroup(1)=low level of risk; Rgroup(2)=medium level
of risk; Rgroup(3)=high level of risk.

Source: Chicago Area Transportation Study — Analysis by authors. Dependent variable is number of
collisions at crossings.
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negative binomial assumption. This is the
reason separate parameter estimates are not
shown for the negative binomial models. The
very few qualitative differences (borderline
significance becoming borderline non-
significance and vice versa) shown in Table
8 do not affect the overall interpretation of
the results. This should not come as a surprise
because for modest amounts of overdis-
persion (which is the case here given the low
ratio of deviance and degrees of freedom
values), it may be shown that the difference
between two sets of parameter estimates, one
based on the negative binomial likelihood and
the other on the Poisson likelihood, may be
neglected (see McCullagh and Nelder, 1989,
p. 199).

Note that the estimated dispersion
parameter for the six negative binomial
models varied between 0.5986 and 0.6659
showing a level of overdispersion that is not
dramatically different than the estimate for the
respective Poisson model adjusted for
overdispersion (column 3 in Table 7). As
already noted, there seems to exist inter-
crossing variability with respect to the number
of collisions, perhaps because crossings with
no collisions or one collision are qualitatively
different from crossings with two or more
collisions.

Interpretation of Model 3

In Model 3 in Table 7, for example, the
coefficient for the ‘Ban’ variable (a yes/no
variable) i1s 1.3747. This means that the
expected number of collisions in whistle-ban
crossings is 100(exp(1.3747)-1)=295%
higher than those for whistle-blowing
crossings. Similarly, the number of collisions
per crossing increases, on average, by
100(exp(0.0137)-1)=1.37% with each addi-
tional train. Moreover, the number of
collisions per crossing is, on average,
100(exp(0.9526)-1)=159% higher in high-risk
vs. low-risk crossings.

The interpretation of the coefficients
when interaction terms are involved follows
that in multiple linear regression. Notice, for
example, that the percent change in the
expected number of accidents with each unit

increase in the number of trains for ban
crossings is 100*(exp(1.3747-0.0224*trains)-
1) that of no-ban crossings. That percentage
becomes increasingly negative when train
volume increases above 61 trains/per day.
Note that only about 9% of the no-ban
crossings, but almost 75% of the ban cross-
ings have train traffic above that level (Table
1). Therefore, the expected number of
accidents in almost three out of four ban
crossings (those with the heavier train traffic)
is lower than in no-ban crossings with the
same level of traffic, a difference that
increases with the number of trains (above the
61 trains per day threshold). For example, at
64 trains per day, the expected number of
accidents in ban crossings is already 5.7%
lower than in no-ban crossings. More
importantly, however, this difference is
significant at any reasonable level.

Similar observations can be made for the
other interaction term in Model 3. Notice, for
example, that the percent change in the
expected number of accidents with each unit
increase in AADT for ban crossings is
100*(exp(1.3747-0.4074*LAADT)-1) that of
no-ban crossings. That percentage becomes
increasingly negative when AADT is higher
than 29.2. Note, however, that all 805
crossings have an AADT value of at least 50
(Table 2). Therefore, the expected number
of accidents in all ban crossings is lower than
in no-ban crossings with the same level of
traffic, a difference that increases with AADT.
For example, at AADT=50, 100, 500, 1000
and 10,000, the expected number of accidents
in ban crossings is, respectively, 19.6%,
39.4%, 68.5%, 76.2% and 90.7% lower than
in no-ban crossings. More importantly, this
difference is significant at any reasonable
level.

CONCLUSIONS

The analysis implies that the study of
collisions at gated crossings is anything but
obvious. A first-level approach reveals
positive effects between whistle bans and
individual operational characteristics, colli-
sion incidence, and number of collisions. For
example, collisions occurred at 45% of the
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whistle ban crossings, but only 32% of the
no-ban crossings when other factors are not
controlled for. This type of study, however,
is generally insufficient in revealing the con-
tributing factors in a complex problem, such
as collisions at highway-rail crossings.
Individual factors are never at work in
isolation. The deeper one delves into the
interactive effects of crossing-specific
characteristics on the number of collisions,
the more confounded the impact of individual
factors becomes so that interaction effects
may even negate the effects of individual
factors.

Additional research is needed to inves-
tigate the effects of collision-specific
environmental and human factors on the

Endnotes

number of collisions. There are still un-
accounted for factors in rail-highway
collisions that warrant further study. If
nothing more, however, this research has not
found evidence to support the rather simplistic
view that whistle bans are responsible for an
increase in the number of collisions at gated
crossings. The presence or absence of whistle
blowing at gated crossings does not occur in
a vacuum, but rather along with other
phenomena that are related to the operation
of the crossings. It is rather misleading,
therefore, to attribute to a single factor, such
as whistle bans, responsibility for the variation
in collision occurrences and frequencies
without assess-ing the compound effects of
all other contributing factors.

1. For a set of measurements arranged in order of magnitude, the d-th decile is the value that has d%
of the measurements below it and (100-d)% above it. Deciles, as other quantiles, cannot be calculated

algebraically.

2. Kuritz, Landis and Koch (1988) present a useful overview of the Mantel-Haenszel strategy. The
Mantel-Haenszel procedure provides statistics that detect general association, mean score differences,
and linear correlation as alternatives to the null hypothesis of no association. The procedure
potentially removes the confounding influence of the explanatory variables.

3. Qg is called the extended Mantel-Haenszel correlation statistic (Mantel, 1963). It
approximately follows the chi-square distribution with one degree of freedom when the combined

strata sizes are sufficiently large, that is 40 or more.

4. The p-value is the probability that a normal random variable has an absolute value larger than the
z-score (estimated coefficient minus zero divided by the estimated standard error) obtained. Ifthe p-
value is small, we have good evidence that the corresponding variable is significant and that the
difference between the coefficient estimate and zero arises not from chance but from a systematic

effect.

5. The adjusted Pearson, deviance, and likelihood residuals are defined by Agresti (1990). These
residuals are useful for outlier detection and for assessing the influence of single observations on the

fitted model.

6. The confidence limits shown are the two-sided Wald confidence intervals for all model
parameters based on the asymptotic normality of the parameter estimates, a reasonable assumption
given the sample size. A small sample would require the computation of the likelihood-ratio

confidence intervals.
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