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Some Computational Insights on the Optimal Bus 
Transit Route Network Design Problem
by Wei (David) Fan, Randy B. Machemehl, and Nicholas E. Lownes

The objective of this paper is to present some computational insights based on previous extensive 
research experiences on the optimal bus transit route network design problem (BTRNDP) with 
zonal demand aggregation and variable transit demand. A multi-objective, nonlinear mixed integer 
model is developed. A general meta-heuristics-based solution methodology is proposed. Genetic 
algorithms (GA), simulated annealing (SA), and a combination of the GA and SA are implemented 
and compared to solve the BTRNDP. Computational results show that zonal demand aggregation 
is necessary and combining metaheuristic algorithms to solve the large scale BTRNDP is very 
promising.
 
INTRODUCTION

Public transit has been widely recognized as a means of reducing air pollution, lowering energy 
consumption, improving mobility and lessening traffic congestion (Bailey 2007). Designing an 
operationally and economically efficient bus transit network is very important for the urban area’s 
social, economic and physical structure. 

In the past decade, several research efforts have examined the bus transit route network design 
problem (BTRNDP). It’s well understood that several sources of complexity, including non-
convexities, non-linearities, the inherent multi-objective cost characteristics, the combinatorial 
complexity due to the discrete BTRNDP nature and the huge candidate solution set, often render the 
solution search space computationally intractable. This computational burden grows exponentially 
with the size of the bus transit network (Baaj and Mahmassani 1991). 

Previous approaches used to solve the BTRNDP can be classified into three categories: 1) 
Practical guidelines and ad hoc procedures; 2) Analytical optimization models for idealized 
situations; and 3) Meta-heuristic approaches for more practical problems. In the early stages of the 
research on bus transit route network design problems, traditional operations research analytical 
optimization models were used. Rather than determine both the route structure and design parameters 
simultaneously, these analytical optimization models were primarily applied to determine one or 
several design parameters (e.g., stop spacing, route spacing, route length, service coverage, bus 
size and/or frequency of service) on a predetermined transit route network structure (Newell 1979, 
Leblanc 1988, Chang and Schonfeld, 1991 and 1993, Chien and Schonfeld 1997, Spasovic et al. 
1993, and Spasovic and Schonfeld 1994).  NCHRP Synthesis of Highway Practice 69 provides 
industry rules-of-thumb service planning guidelines based largely on these analytic methods. 

Generally speaking, these analytical optimization models are very effective in solving 
optimization-related problems for networks of small size or with one or two decision variables. 
However, when it comes to the transit route design problem for a network of realistic size in which 
many parameters need to be determined, this approach does not work very well. Due to the inherent 
complexity involved in the BTRNDP, meta-heuristic approaches that pursue reasonably good local 
optima but do not guarantee the global optimal solution were proposed. 

The heuristic (Lampkin and Saalmans 1967, Rea 1971, Silman et al. 1974, Dubois et al. 1979, 
Axhausemm and Smith 1984, Ceder and Wilson 1986, Ceder and Israeli 1998, Van Nes et al. 1988, 
Baaj and Mahmassani 1991, Shih et al. 1998, Lee and Vuchic 2000, and Zhao and Zeng 2007) and 
meta-heuristic approaches primarily dealt with simultaneous design of the transit route network and 
determination of its associated bus frequencies. Those meta-heuristics methods used for solving 
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the BTRNDP with fixed transit demand include genetic algorithms (Pattnaik et al. 1998, Chien 
et al. 2001, Chakroborty and Dwivedi 2002, Bielli et al. 2002, Chakroborty 2003, Fan 2004, and 
Fan and Machemehl 2006a), simulated annealing (Fan 2004, and Fan and Machemehl 2006b), and 
tabu search (Fan 2004, and Fan and Machemehl 2004). To make the BTRNDP more tractable, all 
previous research work assumed bus transit demand as fixed. This approach is problematic because 
the bus transit demand actually depends on the specific configuration of the bus transit network 
structure and its route frequencies. This variable relationship existing between the transit demand 
and network configuration makes the consideration of the BTRNDP with variable transit demand a 
necessity. Limited research on the BTRNDP with variable transit demand can provide some insights 
(Lee and Vuchic 2000, Fan 2004, and Fan and Machemehl 2006a), though research efforts have 
used one algorithm alone to solve the BTRNDP. It is believed that the warm start method (using the 
solutions obtained from one algorithm as a starting point for another algorithm) will have superior 
performance compared to using a single algorithm alone.

As such, the objective of this paper is to present computational insights based on extensive 
research experience on the BTRNDP with variable (elastic) transit demand. The main original 
contribution of this paper is to emphasize the computational necessity of zonal demand aggregation, 
introduce the warm start concepts, and combine and compare two very advanced meta-heuristics 
methods to solve the BTRNDP for the first time. In particular, Genetic algorithms (GA), simulated 
annealing algorithm (SA), and a combination of the GA and SA are implemented to solve the 
BTRNDP. Particular attention is given to the algorithm comparisons and warm start component.

The subsequent sections of this paper are organized as follows: section 2 presents model 
formulation of the BTRNDP. Section 3 proposes the solution methodology for the BTRNDP 
with variable transit demand. Section 4 discusses the comprehensive computational results of the 
experimental network. Finally, a summary and discussion of future research directions concludes 
this paper in section 5.

MODEL FORMULATION

The BTRNDP transportation system can be described in terms of “nodes,” “links” and “routes.” 
Consider a connected network with a directed graph G = {N, A} consisting of a finite set of N nodes 
and A links (arcs) which connect pairs of nodes with the following relevant notation.

Sets/Indices:
i, j  N 	 Centroid nodes i and j (i.e., zones)
rk  R 	 k-th route
it  N 	 t-th distribution node of centroid node i
tr  R 	 transfer paths that use more than one route from R

Data:

maxR = maximum allowed number of routes for the route network
N  = number of centroid nodes in the route network

maxD = maximum length of any route in the transit network

minD = minimum length of any route in the transit network

ijd  = total demand between centroid nodes i and j

maxh = maximum headway required for any route

minh = minimum headway required for any route
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maxL = maximum load factor for any route

bV = the bus travel speed
P = seating capacity of buses operating on the network
F = maximum bus fleet size available for operations on the route network

vC = per-hour operating cost of a bus; ($/vehicle/hour)

mC = value of time ($/min)

vO = operating hours for the bus running on any route; (hours)

dC = value of each unsatisfied travel demand in dollars ($/person)

321 W,W,W = weights reflecting the relative importance of three components: the user 		
costs, operator costs and unsatisfied total demand costs respectively

Decision Variables:
M = the number of routes of the current proposed bus transit network solution

mr = the m-th route of the proposed solution, m = 1,2,..., M

mr
D = the overall length of route mr

mr
ijd = the bus transit travel demand between centroid nodes i and j on route mr
tr
ijd = the bus transit travel demand between centroid nodes i and j along transfer path tr

ijDR = the set of direct routes used to serve the demand from centroid nodes i and j

ijTR = the set of transfer paths used to serve the demand from centroid nodes i and j

mr
ijt = the total travel time between centroid node i and j on route mr
tr
ijt = the total travel time between centroid node i and j along transfer path tr

mrh = the bus headway operating on route mr  (hours/vehicle)

mr
L = loading factor in route mr

mr
T = the round trip time of route mr ; brr VDT

mm
2 =

mr
N = the number of operating buses required on route mr ;

mmm rrr hT=N 
max
mr

Q = the maximum flow occurring on the route mr  (person/hour)

Objective Function:
The objective is to minimize the sum of user cost, operator cost and unsatisfied demand costs 

for the studied bus transit network. The objective function is as follows:
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s.t.

	 (headway feasibility constraint)

	 (load factor constraint)

	 (fleet size constraint)

	 (trip length constraint)

						      (maximum numbers of routes constraint)

The first term of the objective function is the total user cost (including the user cost on direct 
routes and on transfer paths), the second is the total operator cost, and the third component is the 
cost resulting from total travel demand, excluding the transit demand satisfied by a specific network 
configuration. Note that W1, W2 and W3 are introduced to reflect the tradeoffs between the user costs, 
the operator costs and unsatisfied travel trips, making BTRNDP a multi-objective optimization 
problem. 

Generally, operator cost refers to the cost of operating the required buses. User costs usually 
consist of four components: walking cost, waiting time, transfer cost, and in-vehicle cost (i.e., in-
vehicle time required for riding a bus to a destination). Generally, these three weights are dependent 
on the planners’ experience and expert judgment. Different settings for these weights might result in 
different optimal transit route networks using the developed solution methodology. However, once 
a specific weight set is chosen for the user costs, the operator costs and unsatisfied travel trips costs, 
an optimal transit route network can be identified. 

For simplicity, the model assumes uniform bus size across the fleet. The first constraint is the 
headway feasibility constraint, which reflects the necessary usage of policy headways in extreme 
situations. The second is the load factor constraint, which guarantees that the maximum flow on 
the critical link of any route rm cannot exceed the bus capacity on that route. The third (fleet size) 
constraint represents the resource limits of the transit company and guarantees that the optimal 
network pattern never uses more vehicles than the currently available ones. The fourth constraint is 
the trip length constraint. This avoids routes that are exceptionally long – bus schedules on very long 
routes are difficult to maintain. Conversely, to guarantee the efficiency of the network, the length 
of routes should not be too short. The fifth constraint sets the maximum number of routes, which 
reflects the fact that transit planners often set a maximum number of routes based on fleet size; this 
will have a great impact on driver scheduling. 

PROPOSED SOLUTION METHODOLODY

Solution Framework

Figure 1 provides the flow chart of the proposed solution framework, which consists of three main 
components: an Initial Candidate Route Set Generation Procedure (ICRSGP) (Fan 2004, and Fan 
and Machemehl 2006a) that generates all feasible routes, incorporating practical bus transit industry 
guidelines using the Dijkstra’s shortest path algorithm (Ahuja et al. 1993) and Yen’s k-shortest path 
algorithm (Yen 1971); a Network Analysis Procedure (NAP) (Fan 2004, and Fan and Machemehl 
2006a) that decides transit demand matrix, assigns transit trips (Han and Wilson 1982, and Shih et 
al. 1998), determines service frequencies and computes performance measures using a two-staged 
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Binary Logit Model - Inversely Proportional Model (BLM-IPM) model (Fan 2004, and Fan and 
Machemehl 2006a); and a Metaheuristic Search Procedure (MSP) that combines the previous two 
parts, guides the candidate solution generation process and selects an optimal set of routes from the 
huge solution space (Fan 2004, and Fan and Machemehl 2006a, 2006b).

Figure 2 provides a flow chart of the NAP as a critical part of the BTRNDP with variable transit 
demand to evaluate the alternative network structure.

Solution Algorithms

As two of the most widely used metaheuristic methods to solve many combinatorial optimization 
problems, Genetic Algorithms (GA) (Fan 2004, Fan and Machemehl 2006a, Goldberg 1989, 
Holland 1975, and Michalewicz 1999) and Simulated Annealing (SA) (Fan and Machemehl 2006b, 
Koulamas et al. 1994, and Eglese 1990) are chosen to solve the BTRNDP. To examine the solution 
quality of the combined GA and SA and determine whether algorithm order matters, warm GA (using 
solutions obtained from SA as a starting point for each route set size) and warm SA (using solutions 
obtained from GA as a starting point for each route set size) are both proposed and implemented in 
this paper.

Figure 3 provides a flow chart of the GA-based solution approach for the BTRNDP with 
variable transit demand. Solution approach based on the SA can be seen from Fan 2004, and Fan 
and Machemehl 2006b.

STOP
● Output the optimal transit route set, associated route frequencies

and related performance measures

  Initial Candidate Route Set Generation Procedure  (ICRSGP)
● generate all feasible routes filtered by some user defined feasibility

constraints in the current bus transit network using Dijkstra’s label
setting shortest path and Yen’s k shortest path algorithm

User Input

  Metaheuristic Search Procedure (MSP) 
● generate starting transit networks
● update proposing solution transit route 

networks based on the NAP results using
a heuristic algoithm

  Network Analysis Procedure  (NAP)
● assign transit trip demands
● determine route frequencies
● compute node level, route level and

network level descriptors
● compute system performance measures

Figure 1: Flow Chart of the Proposed Solution Methodology
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Figure 2: Network Analysis Procedure (NAP) for the BTRNDP 
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Figure 3: A Genetic Algorithm-Based Solution Approach for the BTRNDP with Variable 		
	   Transit Demand
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EXPERIMENTAL NETWORK AND NUMERICAL RESULTS

Several example networks are designed (Fan 2004) and the proposed algorithms implemented and 
tested using software developed in C++. 

Example Network Configuration

The GA/SA based solution methodology is implemented using the example network shown in 
Figure 4. This example network contains 28 travel demand zones and 65 road intersections.  The 
BTRNDP zonal demands assume a distribution identical to the demand distribution of an auto-only 
network. The example network seeks to illustrate the proposed solution methodology for real-world 
applications. That is, for the large-scale BTRNDP, the zonal demands should be aggregated at the 
distribution node level in consideration of computation time, an assertion which is supported later in 
the computational necessity section. The chosen distribution node location might be obvious (only 
one entrance/exit for a particular travel zone) or less obvious (two or more locations where one 
could set the zonal demand aggregation point). After engaging in preliminary data processing, the 
example network contained 28 centroid distribution nodes, 93 nodes, and 284 arcs.
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Sensitivity Analyses

The characteristics of the BTRNDP are extensive and complex due to its multi-objective decision 
making nature and the variety of parameters and procedures involved. The behavior of the BTRNDP 
depends upon the network size, the chosen parameters in the solution process and the chosen weight 
set level for each component of the objective function. In this sense, it is very hard to perform the 
sensitivity analysis in each case and generalize the behavior (e.g., the effect of route set size) of the 
BTRNDP. However, it is found that for the BTRNDP with variable transit demand, the characteristic 
behavior of the solutions obtained is similar in most cases and follows a somewhat predictable 
pattern (Fan 2004). In that regard, the numerical results based upon weights of 0.4, 0.2 and 0.4 for 
the user cost, operator cost and unsatisfied demand cost respectively, are chosen in this paper and 
used as a baseline for sensitivity analyses.

Table 1 presents a resulting set of optimal parameters derived from the sensitivity analyses of 
the GA and SA. Details on how to conduct the sensitivity analyses and how each set of optimal 
parameter values inherent in GA and SA are selected were presented in previous work (Fan 2004, 
and Fan and Machemehl 2006a, 2006b).

Table 1: Resulting Set of Optimal Parameters for the GA and SA
Genetic Algorithms Simulated Annealing

Population Size 50 Temperature 2000
Generations 100 Generations 20
Crossover Probability 0.8 Alpha Value 0.6
Mutation Probability 0.1 Repetition Counter 10

Computational Necessity of Zonal Demand Aggregation

The impacts of zonal demand aggregation on the computation time and solution quality are examined 
using the example network. A representative numerical result is given in Figure 5.1 to show the 
effects of zonal demand aggregation on solution quality for the BTRNDP, setting the weight of the 
unsatisfied demand cost as 0.4 and varying the weights of the user cost. As can be seen, the objective 
function values are smaller (more desirable) for the BTRNDP without zonal demand aggregation 
than with zonal demand aggregation at any weight set level. This is expected because the BTRNDP 
with zonal demand aggregation is an approximated (i.e., more constrained) version of the BTRNDP 
without zonal demand aggregation. The only difference is that the former (with zonal demand 
aggregation) assigns all zonal demands onto a chosen location rather than multiple distribution node 
locations. Therefore, the optimal objective function that can be achieved in the latter case is usually 
less than that in the former case (it will always be less if the BTRNDP is a convex rather than a 
non-convex problem). 

If one tends to emphasize the solution quality and wants an optimal solution network, the 
BTRNDP without zonal demand aggregation is obviously the better choice. However, the improved 
solution quality from the BTRNDP without zonal demand aggregation comes at the cost of a 
significantly slower computation speed as shown in Figure 5.3. For example, the observed computing 
time for the BTRNDP with zonal demand aggregation using the example network is about three 
hours (the computation time for the GA and SA are almost the same) while that for the BTRNDP 
without zonal demand aggregation is about 72 hours. This is due to the combinatorial nature of the 
BTRNDP, in which the BTRNDP with zonal demand aggregation has a smaller solution space, less 
overlapping nodes among different routes, and much fewer combinations of routes than that without 
zonal demand aggregation. Also, since the BTRNDP with zonal demand aggregation has a smaller 
solution space, one can see from Figure 5.1 that the computational result is more consistent and has  
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less variation compared to that without zonal demand aggregation. The computer used for testing 
has a configuration of P4 CPU 2.0 GHz and 512MB of memory.

Figure 5.2 further illustrates the relative difference in the objective function value between the 
BTRNDP with and without zonal demand aggregation. As one can see, the relative difference is not 

Figure 5: Effects of Zonal Demand Aggregation on Computation Performance and Efficiency 	
	   for the BTRNDP
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great (ranged from 2-10%). Interestingly, on all conducted experiments, the lower the weight of the 
operator cost in the BTRNDP (worry less about the operator cost), the less the relative difference. 
This is probably attributable to the high penalty cost for the unsatisfied demand cost. With lower 
regard for operator cost and somewhat simplified solution space, the algorithms can focus more 
on finding a set of (different but similar in both scenarios) routes that may need large fleet size 
but provide service as good as possible to satisfy most transit users for the BTRNDP with zonal 
demand aggregation. These computational observations suggest the BTRNDP with zonal demand 
aggregation is highly relevant for real-world application.

Computational Performance and Efficiency

The computational performance analysis of the proposed metaheuristics is conducted through 
algorithm comparisons between GA alone, SA alone, warm GA (using solutions obtained from SA 
as a starting point for each route set size), and warm SA (using solutions obtained from GA as a 
starting point for each route set size) using the example network. Of further interest, pure random 
search (which randomly searches and selects route set within the solution space) is also used as a 
benchmark for solution quality comparison. 

Figure 6 presents the algorithm solution quality comparisons for the BTRNDP. As expected, all 
metaheuristics are better than the pure random search method. It is very interesting to see that GA 
(alone) outperforms SA (alone) in nearly all cases of the BTRNDP with zonal demand aggregation. 
This is distinguished from previous conclusions that SA is better than GA for the BTRNDP without 
zonal demand aggregation (Fan 2004, and Fan and Machemehl 2006b). This can be explained as 
follows: without zonal demand aggregation, there are many feasible routes that can be generated 
from the shortest path and k-shortest path algorithm from the IGRSGP for the same origin and 
destination node pair. The routes form the neighborhood, and a very good one, as part of the optimal 
set of routes that can be selected and explored by a neighborhood-based metaheuristic algorithm 
such as SA. 

However, with zonal demand aggregation, there is a significant reduction in the amount 
of feasible routes for an origin - destination pair and therefore an increase in the possibility of 
eliminating some efficient routes for selection as part of optimal route set solution applying the 
neighborhood definition, resulting in poorer performance of SA. In the demand aggregated scenario, 
GA can perform better than the SA since it is not a neighborhood-based metaheuristic, rather it 
produces optimal solutions by selection, mutation and crossover. Also, the graph clearly shows 
that the warmed SA, which uses the solutions obtained from GA as a warm start, does not improve 

Figure 6. Algorithm Solution Quality Comparisons for the BTRNDP with Zonal Demand 		
	   Aggregation
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significantly in solution quality over the GA alone algorithm. However, the warmed GA, which uses 
the solutions obtained from SA as a warm start, is observed to be much better than the SA alone and 
actually outperforms all other algorithms for the BTRNDP. Based on the numerical results in Figure 
6, the SA, as a neighborhood based metaheuristic, may not be suitable for solving the real world 
BTRNDP. GA, one the other hand, can be used effectively to solve the large scale BTRNDP. Also, 
not all combined metaheuristics can be used to significantly improve the solution quality. Warm GA, 
which uses the solutions from the SA as a warm start, are highly recommended for the real world 
BTRNDP. In terms of computing efficiency, the computation time for the warm GA and warm SA 
are nearly the same and each takes about 4.5 hours using the same computer configuration.

Effect of Route Set Size

Figure 6 also displays the effect of the number of proposed routes in the transit network solution 
increasing from 1 to 10. Based on these results, it is shown that as the route set size increases, the 
solution improves initially because more transit demand is assigned to the network and unsatisfied 
demand costs decrease. However, the lowest objective function value is achieved with six routes 
for the studied network and subsequent increases in the fleet size (i.e., operator costs) produce 
underutilization of routes and do not result in an improved objective function value.

SUMMARY AND FUTURE RESEARCH

The objective of this paper is to present computational insights on the optimal bus transit route 
network design problem (BTRNDP) with zonal demand aggregation and variable transit demand. 
A multi-objective nonlinear mixed integer model is developed. A general meta-heuristics based 
solution methodology is proposed. Genetic algorithms (GA), simulated annealing (SA), warmed 
GA, and warmed SA are implemented to solve the BTRNDP. 

The necessity of zonal demand aggregation for the BTRNDP with variable transit demand is 
presented and justified. Algorithms are compared in terms of the solution quality. Computational 
results show that warmed GA outperforms all other tested algorithms and therefore is highly 
recommended for the large scale BTRNDP. Other characteristics, such as the effect of route set size 
are also presented. 

Combining metaheuristic algorithms as an approach to solve the large scale BTRNDP is very 
promising. The performance of the combination of GA and SA with tabu search or other metaheuristic 
algorithms remains to be seen. Also, comparing solutions derived from these algorithms with those 
using existing transit route planning software such as EMME/2 and/or implantations using CPLEX 
may be also interesting. Future research may be directed toward these ends with further insight 
provided for solving large-scale instances of the BTRNDP.
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