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Analysis of Bridge Deterioration Rates:
A Case Study of the Northern Plains Region
by Denver Tolliver and Pan Lu

A bridge deterioration model is estimated from the National Bridge Inventory that explains 
and forecasts future condition as a function of bridge material, bridge design, operating rating 
classification, average daily traffic, the state where the bridge is located, and the age of the bridge. 
Over the 95-year analysis period, the rate of bridge deterioration with age is a third-order polynomial 
function. However, the relationship between condition and age is approximately linear until age 65. 
Holding all else constant, a bridge substructure in the Northern Plains loses approximately one-half 
of a condition rating point every 13 years until age 65. 

INTRODUCTION

According to the United States Department of Transportation (USDOT 2008), more than 597,000 
bridges located on public roads in the United States are greater than 20 feet in length. Approximately 
47% of these bridges were built before 1966 (USDOT 2008), many of them during the initial 
interstate highway construction era. Bridges in this age category have reached or will reach their 50-
year milestone during the next five years. Although 50 years was originally thought of as the design 
life of a highway bridge, the useful life of a bridge can be extended through diligent maintenance 
and rehabilitation. However, with looming deficits in the Highway Trust Fund, state and local 
officials are concerned about the availability of resources to extend bridge service lives and replace 
structurally deficient or obsolete bridges.

Knowledge of bridge deterioration rates is essential for cost-effective asset management and 
long-range transportation planning. In the United States, the Federal Highway Administration has 
developed the National Bridge Investment Analysis System (NBIAS) to analyze and forecast bridge 
conditions. The NBIAS analyzes deficiencies at the level of individual bridge elements using the 
National Bridge Inventory (NBI). The NBIAS uses a probabilistic method of modeling bridge 
deterioration in which transition probabilities are used to project the likelihood that a bridge element 
will deteriorate from its current condition to a lower condition level during a future interval. The 
NBIAS assumes that the probability of a bridge element deteriorating from its current condition 
to the next (lower) level is independent of age. However, as USDOT notes (2008, 10-30), “This 
assumption may not be warranted in all cases, particularly in situations in which a bridge has not 
been aggressively maintained over its full lifetime and/or has been subject to loadings in excess of 
what was anticipated when the structure was built.” 

The purpose of this study is to develop a model for explaining and forecasting the deterioration 
rates of bridges over time. Much of the research in this field has focused on predictions derived 
from Markov Chains using transition probabilities. In these models, the probability that a bridge 
(or bridge element) will be in a certain condition at time t1 is a function of its condition at time t0.  
Thus, the history of bridge deterioration in previous periods and the effects of individual factors 
are not explicitly considered. While Markov Chains are useful for predicting changes in individual 
bridge conditions over time, other methods are needed to explain variations in deterioration rates 
among categories of bridges and regions, and to quantify the contributions of individual factors to 
deterioration rates. The model described in this paper is an explanatory tool intended for strategic 
analysis. It builds upon previous research and illustrates how deterioration models can be estimated 
that account for diversity in environment, traffic, and other key factors, and how these models can be 
used to forecast deterioration rates for classes of bridges. The model supplements existing analysis 
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tools and allows for strategic long-range forecasting based on bridge type, age, traffic, and other 
factors. 

Jiang and Sinha (1989) developed a procedure to forecast bridge condition as a function of 
current condition and age using a third-order polynomial function, in which condition is a function 
of age, age squared, and the cube of age. In a multi-state study, Dunker and Rabbat (1990) analyzed 
bridges built between 1950 and 1987 and, in doing so, found more variation in bridge deficiencies 
among states than among environmental and traffic categories. The authors also determined that 
structural deficiency percentages decreased as the quality of the bridge material increased from 
timber to steel to concrete. Moreover, this pattern was independent of age. Madanat, Karlaftis, and 
McCarthy (1997) concluded that bridge condition is a linear function of many factors including 
current condition, type of bridge, environment, traffic volume, and age. Similarly, Kallen and Van 
Noortwijk (2006) concluded that bridge deterioration is highly dependent upon the age of the structure 
and that the relationship between expected bridge condition and age is a polynomial function. Kim 
and Koon (2010) found that age is the most significant contributor to the structural deficiency of 
decks and bridge superstructures in cold regions, followed by the structural characteristics of the 
bridge and traffic volume. 

In line with previous research, the objective of this paper is to analyze bridge deterioration as 
a function of key variables such as age, bridge type, and material. While this study focuses on the 
Northern Plains, the model can be replicated in other regions using NBI data.

OVERVIEW OF MODELS AND DATA

Kim and Koon (2010) focused on the bridge deck and superstructure, which is the part of the bridge 
that directly supports traffic loads. In contrast, this paper focuses on the bridge substructure, which 
transfers loads from the superstructure to the ground. The dataset used in this analysis consists of 
the 2009 NBI for the states of Iowa, Minnesota, Nebraska, North Dakota, and South Dakota. These 
states lie in the heart of the northern Great Plains region (referred to as the Northern Plains). This is 
a region of severe climate with considerable variation in temperature and freeze-thaw cycles. The 
five states are similar topographically and climatically. Nevertheless, there are financial, economic, 
and geographic differences among them. 

The dependent variable of the model is bridge condition rating (Table 1). In this rating scale, a 
brand new bridge deteriorates from excellent condition to failure via eight interim steps or levels. In 
this paper, bridge condition is treated as an integer-scaled variable. A change of one unit anywhere 
on the scale has the same statistical effect: e.g., a change from very good to good has the same 
statistical effect as a change from fair to poor. Although imperfect, the interpretation of bridge 
condition as an integer-scaled variable is acceptable because the purpose of this study is to forecast 
when condition ratings will change, not to assess the seriousness of the changes or the need for 
remedial actions. Nevertheless, a corollary issue exists: the condition ratings are scored by different 
people (i.e., different bridge inspectors). As a result, human (perceptual) differences are reflected in 
the evaluations. To some extent, these variations are captured by state indicator variables that reflect 
differences in inspection and maintenance policies and programs among states.



JTRF Volume 50 No. 2, Summer 2011

89

Table 1: Bridge Condition Ratings
Code Meaning Description

9 Excellent

8 Very Good No problems noted.

7 Good Some minor problems.

6 Satisfactory Structural elements show some minor deterioration.
5 Fair All primary structural elements are sound but may have minor 

deterioration.

4 Poor Major deterioration is occurring.
3 Serious Deterioration has seriously affected the primary structural 

components of the bridge. Local failures are possible. 
2 Critical Advanced deterioration of the primary structural elements is 

evident. Unless closely monitored it may be necessary to close 
the bridge until corrective action is taken.

1 Imminent Failure Major deterioration is affecting the stability of the bridge. The 
bridge is closed to traffic but corrective action may allow it to 
be out back in light service.

0 Failed The bridge is out of service and beyond corrective action. 

Age is the quantitative independent variable of the model. The age of a bridge is computed 
as 2009 minus the year of original construction or reconstruction. Bridges tend to deteriorate 
consistently with time. Theoretically, the rate of loss is a polynomial function. This hypothesis is 
based on two suppositions: (1) The rate of loss may be modest and nearly linear until a bridge’s 
condition deteriorates to fair. Then, more maintenance and repairs are implemented to keep the 
bridge safe and operational. These improvements may slow the rate of condition loss with time. 
(2) Once a bridge is in serious condition it may continue in light service for some time under close 
scrutiny via posting (e.g., limiting the traffic loads) and spot repairs. 

While there are logical arguments for a polynomial form, it must fit the data. As shown in 
Figure 1, a plot of mean substructure rating against age exhibits a third-degree polynomial form 
up to 95 years. Around age 65, the graph turns up temporarily, and then down again. After age 95, 
the observations begin to spread out. These are very old bridges. Many of them were built before 
standardization of designs. Not surprisingly, the variance within this group is quite significant. While 
Figure 1 suggests that a polynomial form is appropriate, the rate of deterioration is approximately 
linear until age 65.

The substructure model consists of five effects: bridge type, bridge design, bridge operating 
rating, average daily traffic (ADT group), and the state where the bridge is located. The values or 
levels of these effects are summarized in Table 2. The effects are defined as indicator or dummy 
variables. They shift the intercept of the regression, thereby creating many unique levels or 
categories—e.g., concrete bridges in Iowa with operating ratings > 80,000 pounds and ADT greater 
than 5,000 trips. Each category has its own unique intercept. However, the slope (or rate of change 
in substructure rating with age) is the same after controlling for bridge type, design, operating rating, 
ADT group, and state.
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Figure 1: Plot of Substructure Condition Rating by Age

 Table 2: Class Level Information

Class Levels Values

Bridge Type 4 Concrete, Steel ,Timber, Other

Bridge Design 8 HS_15, HS_20, HS_20+, HS_25, H_10, H_15, H_20, Other

Operating Rating 4 40 kips, 60 kips, 80 kips, > 80 kips (1 kip=1,000 lb)

ADT Group 4 0-100; 101-1,000; 1,001-5,000; >  5,000 

State 5 IA, MN, ND, NE, SD

In this analysis, railroad and pedestrian bridges have been eliminated from the dataset. The remaining 
bridges consist of three material types (concrete, steel, and timber), plus an “other” category which 
includes mixed and masonry bridges. Bridge design consists of seven main categories (HS-15, 
HS-20, HS-20+, HS-25, H-10, H-15, and H-20), plus an “other” category. These designs reflect 
prototypical truck configurations and loading patterns. A prefix of H denotes a single-unit truck, 
whereas HS denotes a tractor pulling a semitrailer. For H bridges, the numeric suffix represents the 
gross weight in tons of a single-unit truck. For example, H-20 denotes a truck with a gross weight 
of 20 tons. In comparison, the numeric suffix of HS vehicles represents the assumed weight on the 
first two axle sets of the truck. For example, HS-20 signifies a truck with a total of 20 tons on the 
tractor’s axles. The ADT volume groups consist of 0–100, 101–1,000, 1,001–5,000, and greater than 
5,000 vehicles per day. The state variable includes five classes and captures differences attributable 
to the bridge’s geographic and jurisdictional location. 

The operating rating is a working estimate of the load capacity of a bridge in terms of maximum 
gross vehicle weight. Four classes are used in this study: ≤ 40,000 pounds, 40,001–60,000 pounds, 
60,001–80,000 pounds, and > 80,000 pounds. The operating rating is to some extent a function of 
bridge design. However, the operating rating provides unique information that is not necessarily 
captured in the design classification. As illustrated in Table 3, H-15 bridges in the Northern Plains 
are distributed among all rating classes. In this paper, material, design, and operating rating are 
used to collectively describe the quality dimensions of a bridge. The operating rating is defined in 
levels rather than as a continuous variable. While the operating rating may be adjusted somewhat 
over time, it is not likely to change category unless the bridge is considered structurally insufficient.
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Table 3: Operating Ratings of H-15 Bridges in the Northern Plains (Thousands of Pounds)

Maximum Operating Rating 40 60 80 > 80

Percent of Bridges 8% 23% 41% 28%

SUBSTRUCTURE MODEL

The essential purpose of the model is to forecast substructure condition rating as a function of age, 
bridge type, bridge design, operating rating, traffic, and location. Because of the relationships shown 
in Figure 1, two models are estimated: a linear model appropriate for bridges 65 years and younger 
and a polynomial model applicable to bridges ≤ 95 years of age. A summary of the polynomial 
regression is presented in Table 4. The model is estimated from 47,812 observations. 

Table 4: Regression Summary for Polynomial Substructure Model

Dependent Variable Substructure Rating

Number of Observations Used 47,812

Degrees of Freedom (DF) 47,788

F-Value 2,623

F-Test for Model Fit (Prob. > F) <.0001

R-Square 0.5580

Adjusted R-Square 0.5578

Coefficient of Variation 16.68
 

Variation in bridge condition is measured by the sum of the squared deviations—i.e., the sum 
of squares. The F-value is a ratio of the sum of squares explained by the regression model, divided 
by the model’s degrees of freedom, to the sum of squares not explained by the model, divided by the 
error degrees of freedom. If the regression model explains little of the variation in bridge condition, 
the F-value will be small. On the other hand, if the model explains much of the variation in condition 
rating, the F-value will be large, as it is in this case (i.e., 2,623). Actually, the value (of 2,623) is 
quite large and the probability of observing such a large value when the null hypothesis is true (e.g., 
the regression model is not a substantially better predictor than the mean) is extremely small—i.e., 
a probability of less than .0001. Of course, the F-value doesn’t indicate which variables are most 
significant and if all of the effects are statistically meaningful. These topics are discussed next.

Incremental Sum of Squares and Tests for Main Effects

Although the substructure model is based on theory, it must still be determined if the theoretical 
effects are statistically significant in the Northern Plains dataset. Main effects are evaluated using 
Type I and Type III sums of squares (SS). Type I sum of squares are computed by sequentially 
adding variables to a model (one at a time) and computing the reduction in the error sum of squares 
attributable to each. In comparison, Type III sum of squares reflect the incremental contribution 
of a variable when it is added to a model that already includes all other variables. For this reason, 
Type III effects are often referred to as partial sums of squares. For both types, an F statistic is used 
to compute a probability based on the null assumption that the added effect does not significantly 
improve the model. As shown in Table 5, the sum of squares tests are highly significant for all five 
effects with probability values of less than .0001, meaning the variables improve the explanatory 
power of the model. 
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Table 5: Incremental Sum of Squares Tests for Polynomial Substructure Model

Probability of > F-Value

Source Type I SS Type III SS

State <.0001 <.0001

Bridge Type <.0001 <.0001

Bridge Design <.0001 <.0001

Operating Rating <.0001 <.0001

ADT <.0001 <.0001

Coefficient of Variation and R-Square

The coefficient of variation (CV) is 16.68 (Table 4). It is computed by dividing the standard error of 
the regression by the mean of the dependent variable (substructure condition rating), and multiplying 
by 100 to express this ratio as a percentage. The coefficient of variation has a range of 0 to 100, with 
lower values indicating a model with good fit to the data. It is a key indicator of the precision of the 
model and the widths of prediction intervals. In this case, the CV is relatively low, which bodes well 
for prediction.

The R-square is the ratio of the sum of squares explained by the regression model to the total 
sum of squares. A higher R2 is preferred, ceteris paribus. Intuitively, the R2 of 0.558 in Table 4 
means that the model explains nearly 56% of the variation in substructure condition rating. Why is 
the R2 not higher? Although the effects attributable to bridge type, bridge design, operating rating, 
traffic volume, and state are captured in the model, many individual bridge effects are not. Fixed 
bridge effects such as quality controls and conditions during initial construction, the frequency of 
inspections, the inspectors, the maintenance program used and the amount of maintenance funds 
available, the frequency of unusual loadings, and deicing practices (e.g., how frequently has the 
bridge been exposed to chemicals?) are not included in the NBI database and cannot be compiled 
from other sources and merged with the NBI records.

Parameter Signs and Estimates

The estimates from the substructure model are shown in Table 6. Both the slope and intercept must 
be used to forecast bridge condition loss. However, before this calculation can be attempted, a 
specific intercept for the type of bridge and location must be computed. An HS-20 concrete bridge 
in Nebraska with an operating rating of 80,000 pounds and 500 ADT is used as an example. The 
specific intercept is computed as 6.69952 + 0.96394 + 0.27807 + 0.74999 − 0.21229 + 0.33922 ≈ 
8.8. Six terms are reflected in this calculation: the model intercept (6.69952), the intercept shift 
attributable to Nebraska (0.96394), the intercept shift attributable to material type (0.27807), the 
intercept shift attributable to bridge design (0.74999), the intercept shift attributable to operating 
rating (−0.21229), and the intercept shift attributable to ADT (0.33922). In effect, the parameter 
estimate of each class variable is added to the intercept to compute a specific intercept for the type 
and design of bridge and traffic class within the state of interest. In this example, a new HS-20 
concrete bridge is predicted to have a condition rating of 6.9 after 40 years (which is computed as 
(8.8 + (−0.06988) × 40 + 0.0005827 × 40 × 40 + (−0.00000135) × 40 × 40 × 40). In other words, the 
bridge is expected to be in satisfactory condition with only minor problems.

Another example is an H-15 timber bridge in Iowa with an operating rating of 80,000 pounds 
and 50 ADT. The intercept is calculated as 6.69952 + 0.21546 + 0.25732 − 0.21229 + 0.26792 
≈ 7.23. This calculation involves only five terms: the model intercept (6.69952), the intercept 
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shift attributable to Iowa (0.21546), the intercept shift attributable to bridge design (0.25732), the 
intercept shift attributable to operating rating (−0.21229), and the intercept shift attributable to ADT 
(0.26792). There is no adjustment factor or shift for bridge material. This is because timber serves 
as the base material of the model. 

In the regression model, the effects of a class level are interpreted in relation to the base. The 
effect of the base level is subsumed in the intercept. As shown in Table 6, the parameter estimates 
of concrete, steel, and other bridges have positive signs, indicating that these bridges deteriorate at 
slower rates than timber bridges (ceteris paribus). The adjusted intercept for H-15 timber bridges 
in Minnesota with operating ratings of 60,001–80,000 pounds and less than 100 ADT can be used 
in conjunction with the coefficients of age to estimate condition over time. For example, this type 
of bridge is expected to have a substructure condition rating of 5.31 after 40 years. In other words, 
H-15 timber bridges in Minnesota with operating ratings of 60,001–80,000 pounds and < 100 ADT 
are expected to be in fair condition after 40 years of service. While the primary structural elements 
of these bridges are expected to be sound, they may exhibit minor deterioration. 

Standard Errors

As shown in Table 6 (Column 3), the standard errors of all variables are small in relation to the 
estimated values. This is a desirable outcome. However, the standard errors may be suspect unless 
the variance of the regression is consistent over the entire range of the dependent variable. 

Non-constant variance (heteroscedasticity) is common in regression analysis. In most instances, 
the form of heteroscedasticity is unknown and cannot be ascertained from the data. In such cases, the 
variance is said to be inconsistent, meaning it is not a function of an independent variable and does 
not increase or decrease monotonically. The regression coefficients (i.e., the parameter estimates) are 
not biased by heteroscedasticity. However, there are two potential issues: (1) Regression coefficients 
estimated from sample data may no longer be efficient (e.g., minimum variance estimators). (2) The 
standard errors may be affected. As a result, hypothesis tests may be unreliable.

The first issue is not a concern for this study because the parameters are estimated from population 
data. Nevertheless, to detect and account for inconsistent variance, heteroscedasticity-consistent 
errors are computed under the assumption that the variance is not constant. These standard errors 
are shown in Column 6 of Table 6. A comparison of Columns 3 and 6 shows only minor differences 
between the two sets of standard errors, suggesting mild inconsistency. This inference is bolstered 
by Figure 1, which suggests that the variance is relatively constant until age 95.

Probability Values and Inferences

In this study, the Northern Plains database constitutes the inventory or population of publicly owned 
bridges. Because an inventory is available, sampling variability is not an issue. Nevertheless, it is 
beneficial to envision the Northern Plains dataset as a large sample of bridges that do (or could) exist 
in the region. This visualization allows hypothesis tests that provide intuitive insights concerning 
the statistical significance of particular effects and sampling variability. For each variable, the 
null hypothesis is that the partial effect attributable to the variable is statistically insignificant. For 
indicator variables, this means that the intercept shift attributable to the variable is not significantly 
different from zero. For quantitative variables, the null hypothesis is that the partial slopes are not 
significantly different from zero. 
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Table 6: Parameter Estimates and Probabilities of Polynomial Substructure Model

Variable
Parameter 
Estimate

Standard 
Error t-value

Prob.
> |t|

Heteroscedasticity Consistent
Standard 

Error t -value
Prob.
> |t|

Intercept 6.69952 0.06279 106.70 <.0001 0.06834 98.03 <.0001
State

IA 0.21546 0.01884 11.44 <.0001 0.01880 11.46 <.0001
MN 0.24442 0.02163 11.30 <.0001 0.02132 11.46 <.0001
ND 0.56697 0.02521 22.49 <.0001 0.02588 21.91 <.0001
NE 0.96394 0.01984 48.59 <.0001 0.01987 48.51 <.0001
SD

Bridge Type
Concrete 0.27807 0.07893 3.52 0.0004 0.08111 3.43 0.0006
Other 0.62834 0.04791 13.11 <.0001 0.05431 11.57 <.0001
Steel 0.30238 0.06479 4.67 <.0001 0.07469 4.05 <.0001
Timber

Bridge Design
H_10 0.38573 0.07788 4.95 <.0001 0.08522 4.53 <.0001
H_15 0.25732 0.01844 13.95 <.0001 0.02056 12.52 <.0001
H_20 0.52047 0.01832 28.41 <.0001 0.01906 27.30 <.0001
HS_15 0.46521 0.07549 6.16 <.0001 0.08971 5.19 <.0001
HS_20 0.74999 0.01737 43.18 <.0001 0.01854 40.45 <.0001
HS_20+ 0.85103 0.03509 24.25 <.0001 0.02927 29.08 <.0001
HS_25 0.78127 0.03051 25.61 <.0001 0.02811 27.80 <.0001
Other

Operating Rating
≤ 40 kips -1.21700 0.01960 -62.09 <.0001 0.02428 -50.13 <.0001
≤ 60 kips -0.65158 0.01895 -34.38 <.0001 0.02099 -31.05 <.0001
≤ 80 kips -0.21229 0.01426 -14.88 <.0001 0.01441 -14.73 <.0001
> 80 kips

ADT Class
0-100 0.26792 0.02072 12.93 <.0001 0.01850 14.48 <.0001
101-1,000 0.33922 0.02144 15.82 <.0001 0.01898 17.87 <.0001
1,001-5,000 0.24224 0.02197 11.03 <.0001 0.01865 12.99 <.0001
>  5,000

Age -0.06988 0.00205 -34.03 <.0001 0.00205 -34.02 <.0001
Age2 0.00058270 0.00005206 11.19 <.0001 0.00005371 10.85 <.0001
Age3 -0.00000135 3.82726E-7 -3.52 0.0004 4.046894E-7 -3.33 0.0009
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The t-values shown in Column 4 of Table 6 are computed by dividing the parameter estimates 
in Column 2 by the corresponding standard errors in Column 3. The heteroscedasticity-consistent 
t-values in Column 7 are computed by dividing the parameter estimates in Column 2 by the 
corresponding heteroscedasticity-consistent errors in Column 6. The probability values (or p-values) 
associated with the t-statistics are shown in Columns 5 and 8, respectively.  With two exceptions, 
the p-values shown in Column 8 of Table 6 indicate less than a one in 10,000 chance of observing 
t-values as large as those observed if the null hypotheses are true. The p-values for concrete bridges 
and the cube of age indicate less than a one in 1,000 chance of observing t-values as large as those 
observed when the null hypotheses are true. Moreover, the p-values for age and age squared are 
highly significant. If the second and third terms of the polynomial model were unimportant, the 
probability values associated with these t-ratios would be much higher. In effect, the tests confirm 
the polynomial functional form. Clearly, all the effects in the model are highly significant. Moreover, 
the mild inconsistency in variance does not affect the hypothesis tests.

Class Variable Effects

The coefficients of concrete, steel and other bridges are positive. As noted earlier, these coefficients 
are interpreted relative to timber bridges, the type of material reflected in the intercept. The positive 
signs indicate that substructure ratings should be higher over time for these types of bridges than 
for timber bridges. Similarly, the coefficients of all bridge designs (HS-15, HS-20, HS-20+, HS-25, 
H-10, H-15, and H-20) are positive, meaning that substructure ratings should be higher over time for 
these designs than for bridges included in the “other” category. However, the signs of the operating 
ratings are negative and must be interpreted in relation to bridges with operating ratings greater than 
80,000 pounds. The negative signs suggest that bridge substructure rating is expected to decrease 
with operating rating, ceteris paribus. This is because the operating rating is a reflection of the 
design quality of a bridge and its capability to accommodate modern truck traffic. Finally, the signs 
of the ADT class variables (0–100, 101–1,000, and 1,001–5,000 vehicles per day) are all positive in 
relation to the base level (greater than 5,000 vehicles per day), suggesting that traffic contributes to 
loss of condition rating over time. 

Because the predictions are ratio scaled, they include fractional results. In effect, they provide 
information about when a bridge is in transition from one condition level to the next. For example, 
a bridge with a predicted condition rating of 6.8 is likely to stay in satisfactory condition for several 
years. In contrast, a bridge with a predicted condition rating of 6.05 is on the verge of transitioning 
from satisfactory to fair.

Forecasting Methods

A manual method of forecasting bridge condition ratings can be devised using the parameters in 
Table 6. The specific intercepts for each combination of bridge type, design, and ADT group are 
shown in Table 7 for bridges in North Dakota with operating ratings of 60,001 to 80,000 pounds. 
The values are rounded to two digits to facilitate calculation. 

Suppose the bridge of interest is a concrete HS-25 bridge with more than 5,000 ADT. The 
expected condition rating after 25 years is 8.11 + (−0.06988) × 25 + 0.0005827 × 625 + (−0.00000135) 
× 15,625 ≈ 6.7. In this example, the bridge is in the upper portion of the satisfactory interval. 
Suppose, instead, that the bridge of interest is a steel H-15 bridge in the highest traffic category. 
The expected condition rating of this bridge after 25 years is 7.61 + (−0.06988) × 25 + 0.0005827 
× 625 + (−0.00000135) × 15,625 ≈ 6.21. In this example, the bridge is in the lowest portion of the 
satisfactory interval.
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Table 7: Specific Intercepts for Bridge Type, Design, and ADT Groups in North Dakota
Applicable to Operating Ratings of 60,001–80,000 Pounds

ADT Volume Group
Bridge Type/Design 0-100 101-1000 1001-5000 >5000
Concrete: HS-15 8.07 8.14 8.04 7.80
Concrete: HS-20 8.35 8.42 8.32 8.08
Concrete: HS-20+ 8.45 8.52 8.43 8.18
Concrete: HS-25 8.38 8.45 8.36 8.11
Concrete: H-10 7.99 8.06 7.96 7.72
Concrete: H-15 7.86 7.93 7.83 7.59
Concrete: H-20 8.12 8.19 8.09 7.85
Concrete: Other 7.60 7.67 7.57 7.33
Other: HS-15 8.42 8.49 8.39 8.15
Other: HS-20 8.70 8.77 8.67 8.43
Other: HS-20+ 8.80 8.87 8.78 8.53
Other: HS-25 8.73 8.80 8.71 8.46
Other: H-10 8.34 8.41 8.31 8.07
Other: H-15 8.21 8.28 8.18 7.94
Other: H-20 8.47 8.54 8.45 8.20
Other: Other 7.95 8.02 7.92 7.68
Steel: HS-15 8.09 8.16 8.06 7.82
Steel: HS-20 8.37 8.45 8.35 8.11
Steel: HS-20+ 8.48 8.55 8.45 8.21
Steel: HS-25 8.41 8.48 8.38 8.14
Steel: H-10 8.01 8.08 7.98 7.74
Steel: H-15 7.88 7.95 7.86 7.61
Steel: H-20 8.14 8.22 8.12 7.88
Steel: Other 7.62 7.70 7.60 7.36
Timber: HS-15 7.79 7.86 7.76 7.52
Timber: HS-20 8.07 8.14 8.05 7.80
Timber: HS-20+ 8.17 8.24 8.15 7.91
Timber: HS-25 8.10 8.17 8.08 7.84
Timber: H-10 7.71 7.78 7.68 7.44
Timber: H-15 7.58 7.65 7.55 7.31
Timber: H-20 7.84 7.91 7.82 7.57
Timber: Other 7.32 7.39 7.30 7.05

Linear Substructure Model

The purpose of this model is to allow easy forecasting of the loss of substructure condition rating 
with age. However, it is important to remember that this model is estimated on a subset of bridges: 
those 65 years of age and younger. Therefore, the slope coefficient applies only within this range. 
The results are summarized in Table 8, while the parameter estimates are displayed in Table 9. Age 
is the primary variable of interest. It has a coefficient of −0.0382. This suggests that the substructure 
condition ratings of bridges 65 years and younger are expected to decline by 0.5 units in 13 years 
and by one full unit in 26 years, ceteris paribus.
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Table 8: Regression Summary for Linear Substructure Model: Age ≤ 65

Dependent Variable Substructure Rating

Number of Observations Used 40770

Degrees of Freedom (DF) 40748

F-Value 2,211

F-Test for Model (Prob. > F) <.0001

R-Square 0.5327

Adjusted R-Square 0.5324

Coefficient of Variation 15.692

Multicollinearity

Multicollinearity exists when one or more of the independent variables are highly correlated with 
each other. In a multiple regression analysis, multicollinearity is a question of degree. It is most 
problematic when the calculation of one independent variable depends upon another, or when two 
effects are mutually exclusive. Extensive multicollinearity may cause several problems: (1) The 
standard errors of the estimates may become inflated. As a result, hypothesis tests may be unreliable. 
Because of inflated errors, a variable that is actually important may fail a hypothesis test. (2) The 
estimates of the parameters may be conditional upon other variables. Consequently, the parameter 
estimates of several variables may change if a highly correlated variable is dropped from or added 
to the model. 

The bridge substructure model exhibits only mild multicollinearity. This conclusion is based on 
the variance inflation factor (VIF), which is computed by regressing one independent variable 
against all others and using the R2 from that regression (  )—i.e.,  Opinions vary 
widely about how much multicollinearity can be tolerated. One suggestion is that variables with 
VIFs of less than 10 may be contributing some unique explanatory information to the model, 
especially if the p-values are low (Kutner, Nachtsheim, and Neter 2004). However, more conservative 
rules of thumb suggest that VIFs ≥ 5.0 may indicate problems. The VIF scores of the 21 independent 
variables in the model range from 1.10 to 4.23 with a median value of 1.79, which suggests that 
multicollinearity is not an issue, even by conservative standards.

CONCLUSION

A model for estimating substructure deterioration rates, which has good statistical properties and 
a relatively low coefficient of variation has been developed. The regression model includes five 
main effects: bridge material, bridge design, operating rating classification, average daily traffic, 
and the state where the bridge is located. These effects are represented through indicator or dummy 
variables that shift the intercepts of the regression, creating many unique levels or categories. 
Although each category has its own unique intercept, the slope (or rate of change in condition rating 
with age) is the same after controlling for bridge type, design, operating rating, ADT group, and 
state. Over the 95-year analysis period, the rate of deterioration is a third-order polynomial function, 
which is consistent with previous findings. However, the relationship between condition and age is 
linear up to 65 years. Holding all else constant, a bridge substructure in the Northern Plains loses 
approximately one-half of a rating point every 13 years until age 65. 
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Table 9: Parameter Estimates and Probabilities of Linear Substructure Model: Age ≤ 65

Variable
Parameter 
Estimate

Standard 
Error

t- 
value

Pr > |t|

Heteroscedasticity Consistent

Standard 
Error

t-
value Pr > |t|

Intercept 6.23460 0.06639 93.92 <.0001 0.07732 80.63 <.0001
State

IA 0.26809 0.02021 13.26 <.0001 0.02044 13.12 <.0001
MN 0.25929 0.02302 11.26 <.0001 0.02253 11.51 <.0001
ND 0.61568 0.02686 22.92 <.0001 0.02769 22.23 <.0001
NE 0.98498 0.02187 45.04 <.0001 0.02198 44.81 <.0001

SD
Bridge Type

Concrete 0.28486 0.08635 3.30 0.0010 0.09381 3.04 0.0024
Other 0.67458 0.05633 11.98 <.0001 0.06866 9.82 <.0001
Steel 0.35378 0.07782 4.55 <.0001 0.09311 3.80 0.0001
Timber

Bridge Design
H_10 0.25013 0.11168 2.24 0.0251 0.12321 2.03 0.0423
H_15 0.28616 0.01941 14.74 <.0001 0.02245 12.75 <.0001
H_20 0.48593 0.01849 26.28 <.0001 0.01980 24.54 <.0001
HS_15 0.52719 0.08324 6.33 <.0001 0.10294 5.12 <.0001
HS_20 0.76971 0.01765 43.61 <.0001 0.01915 40.19 <.0001
HS_20+ 0.87432 0.03505 24.95 <.0001 0.02976 29.38 <.0001
HS_25 0.88668 0.02998 29.58 <.0001 0.02780 31.89 <.0001
Other

Operating Rating
≤ 40 kips -1.27792 0.02300 -55.55 <.0001 0.03069 -41.64 <.0001
≤ 60 kips -0.68362 0.02096 -32.62 <.0001 0.02400 -28.48 <.0001
≤ 80 kips -0.23620 0.01473 -16.03 <.0001 0.01509 -15.65 <.0001
> 80 kips

ADT Class
0-100 0.31876 0.02056 15.51 <.0001 0.01878 16.98 <.0001
101-1,000 0.37676 0.02132 17.67 <.0001 0.01936 19.46 <.0001
1,001-5,000 0.25202 0.02176 11.58 <.0001 0.01890 13.34 <.0001
>  5,000
Age -0.03820 0.0004279 -89.28 <.0001 0.0004889 -78.14 <.0001

As shown in Figure 2, a concrete HS-20 plus bridge in North Dakota with 500 ADT and an 
operating rating greater than 80,000 pounds is projected to have a substructure condition rating of 
6.65 after 40 years and 6.28 after 65 years of service. In comparison, a concrete HS-15 bridge in 
the same categories is projected to have a substructure condition rating of 6.26 after 40 years and 
5.90 after 65 years of service.  A bridge in one of the lower design categories (H-15) is expected 
to have a substructure condition rating of 6.05 after 40 years and 5.69 after 65 years of service. 
Specific curves for more than 2,500 unique combinations of bridge design, material, operating 
rating, and state can be generated from the model. No interaction terms (e.g., bridge type and age) 
were statistically significant.
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The model developed in this study can be used to estimate deterioration rates for subsets or 
classes of bridges defined by bridge material, design, operating rating, average daily traffic, and 
state. The model is appropriate for system and subsystem planning in which the objective is to 
provide agency managers with strategic information. However, the model should not be used for 
project evaluation, where specific consideration of individual bridge elements and local factors is 
essential.  

Figure 2:	 Substructure Condition Ratings for North Dakota Concrete Bridges with
	 101-1,000 ADT and Operating Ratings > 80,000 pounds

	

In conclusion, it is important to summarize the key information not available for this study: 
(1) The history and timing of maintenance expenditures for each bridge are unknown. While 
maintenance expenditures are reflected in the deterioration rates, they are not explicitly represented 
as variables in the model. (2) The condition ratings are scored by different people. As a result, 
human variations are reflected in the evaluations. (3) Many individual bridge effects such as the 
frequency of unusual loadings, maintenance, deicing practices, and initial and extreme conditions 
are not reflected in the models.  (4) More detailed models are possible by predicting the conditions 
of individual bridge elements. However, this approach would require many individual regression 
equations and is beyond the scope of this paper.
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