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Modeling Frequency of Truck Crashes 
on Limited-Access Highways
by Niranga Amarasingha and Sunanda Dissanayake

Freight can be efficiently transported between most locations in the U.S. using large trucks. 
Involvement of large trucks in crashes can cause much damage and serious injuries, due to their 
large sizes and heavy weights. The purpose of this study was to identify the relationships between 
large truck crashes and traffic and geometric characteristics on limited access highways. Crash and 
traffic and geometric-related data for Kansas were utilized to develop a Poisson regression model 
and a negative binomial regression model for understanding the relationships. Based on model-
fitting statistics, the negative binomial model was found to be the better model, which was used to 
identify the important characteristics. By addressing identified factors, safety could be promoted 
through introduction of appropriate engineering improvements.

INTRODUCTION	

In the United States, large trucks provide a convenient mode for the movement of freight from 
origin to destination. The American Trucking Association reported a 47% increase in registered 
large trucks and a 65% increase in their miles traveled from 1988 to 2008 (ATA 2012). In 2009, 
large trucks accounted for 4% of all registered vehicles and 10% of total vehicle miles traveled 
in the U.S. (NHTSA 2009). Trucks with gross vehicle weight greater than 10,000 pounds are 
typically considered large trucks, and 296,000 of such trucks were involved in traffic crashes on 
U.S. roadways during 2009 (NHTSA 2009). There were 3,380 fatalities and 74,000 injuries reported 
due to those large truck crashes that year. Also, according to 2009 statistics, large trucks represented 
about 7% of vehicles in fatal crashes, 2% of vehicles in injury crashes, and 3% of vehicles in 
property-damage-only crashes (NHTSA 2009). Involvement of large trucks in crashes can cause 
much damage and serious injuries due to their large sizes and heavy weights. In 2009, occupants 
of large trucks comprised only 22% of fatalities resulting from fatal large truck crashes, while 78% 
of the fatalities occurred outside the truck to pedestrians, cyclists, and, primarily, occupants of 
passenger vehicles (NHTSA 2009). 

Injuries and severity of injuries that occur in a crash increase exponentially with vehicle speed 
(Stuster 1999). However, long distance freight transportation requires large trucks to have access to 
interstate and state highways and operate at higher speeds. Also, drivers may face vehicle control 
challenges or difficulties while driving large trucks on interstate or state highways at high speeds. 
Interstates and urban highways serve a diverse combination of passenger vehicle traffic, local 
delivery truck traffic, and long-haul truck traffic. 

Analysis of large truck crash data indicates there are traffic and highway geometric characteristics 
associated with large truck crashes (Miaou 1994). Highway geometric design features such as 
a horizontal curvature, vertical grade, lane width, lane type, shoulder width, shoulder type, and 
median are engineering factors which might be used to reduce the number of large truck crashes. 
One of many important aspects of highway safety research is developing crash prediction models 
to quantify the relationship between traffic and geometric characteristics and the number of crashes 
observed. Identifying the effects of traffic and geometric characteristics is important to promote 
safety by introducing engineering improvements. The focus of this research was to understand and 
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evaluate the effects of both traffic conditions and site characteristics on the occurrence of large truck 
crashes.

LITERATURE REVIEW

Several previous studies have investigated the relationship between crash rates and traffic and 
geometric design features. A number of crash frequency models have been developed for large 
truck crashes exclusively. Mohamedshah et al. (1993) investigated traffic and geometric-related 
variables that affect truck crashes using data from the Highway Safety Information System (HSIS). 
Multivariate logistic models for truck crashes on interstates and two-lane rural roads were developed 
considering truck crash data in Utah from 1980 to 1989. As indicated by the statistically significant 
variables in the interstate model, truck crashes were primarily affected by horizontal curvature 
and vertical gradient. Vertical gradient is inclination of road surface to the horizontal plane while 
horizontal curvature can be defined as a measure of the sharpness of a horizontal curve. When values 
of horizontal curvature or vertical grade increases, the number of truck crashes increases. For two-
lane rural roads, as indicated by the statistically significant variables in the model, truck crashes were 
affected by shoulder width and horizontal curvature. With the increase of the horizontal curvature, 
the number of truck crashes increases; however, shoulder width and number of truck crashes have 
a negative relationship.

Miaou (1994) evaluated the relationship between truck crashes and geometric design features 
of road sections using Poisson regression, Zero-Inflated Poisson regression, and negative binomial 
regression models. Data were obtained from the HSIS, which included 1,643 large truck crashes 
occurring on Utah highway sections within the five-year period from 1985 to 1989. Estimated 
regression parameters from all three models were quite consistent in terms of estimated relative 
frequencies of truck crashes across road sections. The developed models were then evaluated 
based on estimated regression parameters, overall goodness-of-fit, predicted relative frequency of 
truck crashes, sensitivity to the inclusion of short road sections, and estimated total number of 
truck crashes. Evaluation results showed that Poisson regression models were best to use as the 
initial model for developing the relationship, while other forms of models could be explored if the 
over-dispersion (i.e., the variance of crash frequency in the dataset exceeds the mean of the crash 
frequency) of crash data is found in the Poisson model. According to estimated coefficients of the 
significant variables, truck crashes increase with the increase of the annual average daily traffic 
(AADT) per lane, horizontal curvature, and vertical grade while number of truck crashes decrease 
with the increase of percentage of trucks in the traffic.

Schneider et al. (2009) developed a negative binomial regression model using crash data 
from Ohio to investigate the effect of rural two-lane horizontal curves on truck crashes at non-
intersection locations. Data were obtained from the Ohio Department of Public Safety and Ohio 
Department of Transportation’s roadway inventory files, which includes all heavy-duty truck 
crashes related to single- and multi-vehicle crashes on horizontal curves. This study further 
investigated implementation of Bayesian methods on model performance. Impact of shoulder width, 
curve radius, curve length, and traffic parameters on truck crashes were considered in the model 
development. The significant variables in the final model were length of horizontal curve, truck 
annual daily traffic (ADT), passenger ADT, and degree of horizontal curve. Each of these variables 
had a positive relationship with the number of truck crashes. The developed model was used to 
target improvements to specific roadways. The model could also be used to identify truck crashes 
that may occur in the future due to volume increases. The authors pointed out the need for improved 
models to accommodate other, non-volume-related contributing factors to truck crashes to improve 
the truck-crash-frequency prediction.

Virginia crash data were used by Joshua and Garber (1990) to find the quantitative relationship 
between traffic and geometric variables, and the probability of occurrence of large truck crashes. 
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Geometric data such as number of lanes, lane and shoulder widths, and vertical and horizontal 
alignments were collected directly from the sites at which a large number of truck-related crashes 
occurred. Multiple linear and Poisson regression analyses were carried out in order to predict the 
number of truck crashes, where the Poisson regression model was found to be capable of better 
describing the relationship. It indicated that the rate of change of slope (change in vertical grade 
divided by the length of the highway segment), average daily traffic, percent of trucks, and speed 
differential between trucks and non-trucks had significantly influenced the number of truck crashes. 
Increase of each of these variables indicated more truck crashes.

Daniel et al. (2002) developed a crash prediction model for truck crashes on route sections with 
signalized intersections. Crash data were obtained from New Jersey accident records, and volume 
and geometric data were obtained by reviewing straight-line diagrams and contract drawings of the 
roadway. A Poisson regression model and a negative binomial regression model were developed. 
Coefficients of the negative binomial model were comparable with those for the Poisson regression 
model with some exceptions. Coefficients of both models showed significant impact based on 
segment length, AADT, length of vertical grade, number of lanes, number of signals within the 
segment, and pavement width on truck crash frequency on selected roadways. According to both 
models, with the increase of segment length, AADT, number of lanes, and number of signals within 
the segment, the number of truck crashes increase. The increase in the length of vertical grade and 
pavement width showed decreased number of truck crashes.

DATA

Crash data from 2005 to 2010 were obtained from the Kansas Department of Transportation (KDOT), 
which were utilized for analysis in this study. These data, included in the Kansas Accident Reporting 
System (KARS) database, comprise all police-reported crashes in Kansas. For this study, large truck 
crash records on limited-access highways were extracted by making the query from all crashes from 
2005–2010 for the state of Kansas. From 2005 to 2010, 5,392 large trucks were involved in crashes 
on limited-access highways. After identifying these large truck crashes, information to locate each 
crash on the highway was obtained from the Control Section Analysis System (CANSYS) database. 

The CANSYS database, maintained by KDOT, is a highway inventory system that includes 
many traffic- and geometric-related details of national and state highways in Kansas. Data from 
2005 to 2010 were obtained for limited-access highways, and sections were defined based on 
homogeneity of road segments and data availability. The selected sections were homogenous in 
terms of number of lanes, horizontal curvature, median width, AADT, truck AADT percent, lane 
width, shoulder width, and existence of rumble strips. Additionally, variables such as functional 
class, section length, and year were considered in the analysis. For this study, data on vertical grade 
(i.e., inclination of road surface to the horizontal plane) were provided by KDOT from construction 
drawings, as vertical grades are not frequently updated in the CANSYS database. 

A total of 16,853 roadway segments were initially identified where the length varied from 0.10 
miles to 19.87 miles, with an average segment length of 0.81 miles. Data were reviewed and sections 
which had speed limits lower than 55 mph and lengths shorter than 0.25 miles were discarded. A 
total of 7,273 roadway segments were considered for further analysis. Table 1 shows summary 
characteristics of road segments used in the analysis. All roadway sections were divided-roadway 
sections, as the focus of this study is on limited-access roads.
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Table 1:	 Traffic- and Geometric-Related Characteristics of Limited-Access Highway
	 Sections 

Variable Description
Sections

Variable Description
Sections

No. % No. %

Section Length 
(SL, in miles)

0.25 ≤ SL < 0.50 2,466 33.91 Right Rumble 
Strips

Yes 4,492 61.76

0.50 ≤ SL <  1.00 2,053 28.23 No 2,781 38.24

1.00 ≤ SL <  2.00 1,302 17.90 Inside 
Rumble Strips

Yes 4,200 57.75

2.00 ≤ SL <  3.00 522 7.18 No 3,073 42.25

3.00 ≤ SL <  4.00 265 3.64

Right 
Shoulder 
Width (ft)

0 68 0.93

4.00≤ SL 665 9.14 2 24 0.33

Speed Limit
(mph)

55 122 1.68 6 46 0.63

60 769 10.57 8 195 2.68

65 1,486 20.43 9 8 0.11

70 4,896 67.32 10 6,838 94.02

Median Width 
(MW, in ft)

MW<10 92 1.26 12 94 1.29

10 ≤ MW <  20 2,087 28.70

Inside 
Shoulder 
Width (ft)

0 2,845 39.12

20 ≤ MW <  30 349 4.80 2 41 0.56

30 ≤ MW <  40 3,997 54.96 3 8 0.11

40≤ MW 748 10.28 4 32 0.44

Functional 
Class

Expressways 1,211 16.65 6 2,970 40.84

Rural interstate 3,351 46.07 7 16 0.22

Urban interstate 2,711 37.27 8 126 1.73

AADT per lane
(veh/day/
lane)

Less than 1,000 302 4.15 9 511 7.03

1,000 - 2,000 2,965 40.77 10 696 9.57

2,000 - 3,000 1,224 16.83 12 28 0.38

3,000 - 4,000 629 8.65 Horizontal 
Curve

Curve 660 9.07

4,000 - 5,000 437 6.01 Straight 6,613 90.93

More than 5,000 1,716 23.59 Vertical 
Grade

Level 6,795 93.43

AADT of Large 
Truck Count 
(veh/day)

Less than 1,000 1,549 21.30 Grade 478 6.57

1,000 - 2,000 4,728 65.01
Number of 
Lanes

4 5,855 80.50

2,000 - 3,000 768 10.56 6 1,220 16.77

More than 3,000 228 3.13 8 198 2.72

Shoulder widths and rumble strips were recorded separately for inside (or left) and outside 
(or right) lanes in a given direction. Absolute values of horizontal curvature and vertical grade on 
each homogeneous section were used for the modeling. Sections having either positive or negative 
horizontal curvature or vertical grade are more dangerous for trucks than other sections where 
the roadway is level and straight. For example, since trucks may not be able to maintain normal, 
prevailing traffic speeds on steep upgrades, they may lead to sudden braking by the following 
vehicles, resulting in overturning or rear-end crashes. Total number of crashes occurring within 
each segment was determined by combining crash data and CANSYS data. About 35% of the road 
segments had at least one large truck crash, regardless of truck configurations and crash-severity 
type, while the remaining segments did not have any reported large truck crashes during the years 
that were being considered. Large crashes are potentially affected by human factors as well, but 
data related to human factors were unavailable or not possible to be aggregated based on individual 
road sections. Similar situation exists for contributory causes for each section as well. The omitted 
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and unavailable factors were kept consistent to better understand the effect of traffic and geometric 
relationships that are being investigated. 

METHODOLOGIES

Various statistical models could be considered for identifying relationships between number of large 
truck crashes and geometric and traffic characteristics. Because of the random and discrete nature 
of crashes, Poisson regression has long been considered as a good starting point for frequency 
modeling (Miaou 1994). 

Poisson Regression Model

Poisson regression model is appropriate for dependent variables that have non-negative integer 
values such as 0, 1, 2… Hence, in most cases, count data could be precisely analyzed by Poisson 
regression (Pedan 2001). More details of Poisson regression analysis can be found in Long (1997).

The Poisson regression model was proposed by Miaou (1994) to find the relationship between 
vehicle crashes and geometric design features of road sections, such as lane width, shoulder width, 
horizontal curvature, and lane width. The Poisson regression model proposed by Miaou (1994) is 
given by:

(1)		

where,
i	 =	a roadway segment.  The same roadway segments in different sample periods are 
		  considered as separate roadway segments.
yi	 = the number of large truck crashes for a year for roadway segment i.
P(yi )	= probability of the occurrence of yi large truck crashes for a year on roadway segment 		

		  i.
μi	 = mean value of large truck crashes occurring for a year as:

(2)	
 	
where,

xij	 = the jth independent variable for roadway segment i,
βj	 = the coefficient for the jth independent variable, and
ϑi	 = traffic exposure for roadway segment i.

Associated with each roadway segment i, xi independent variables describe geometric 
characteristics, traffic conditions, and other relevant attributes. Traffic exposure, which is the amount 
of large truck travel during the sample year, can be computed as:

(3) 		
	
where,

ϑi	 = traffic exposure on segment i,
AADTi	= Annual Average Daily Traffic (vehicles/day),
T%i	 = percentage of large trucks in traffic stream, and
li	 = length of the road segment.

yii
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This model assumes the number of large truck crashes for a given time period for roadway 
segments (Yi; i = 1,2, ... . n) are independent of each other and Poisson distributed with mean. The 
expected number of large truck crashes E(Yi) is proportional to large truck travel ϑi. The model 
ensures that the crash frequency is positive, using an exponential function given by:

(4)	
	
where,

λi	 = exposure-based number of large truck crashes,
E(Yi)	 = expected number of large truck crashes,

	 = transpose of covariate vector xi , and
β	 = vector of unknown regression parameters.

One important property of Poisson regression is that it restricts the mean and variance of the 
distribution to be equal. This can be written as:

(5)	
	
where,

μi	 = mean of the response variable yi ,
E(yi) 	 = expected number of response variable yi , and
Var(yi)	 = variance of response variable yi .

If this equality does not hold, the data are said to be either underdispersed or overdispersed, and 
the resulting parameter estimates will be biased. If the overdispersion is not captured in the analysis, 
the standard errors are underestimated and, hence, it becomes an overstatement of significance in 
hypothesis testing (Pedan 2001). If the model fits the data, both deviance and Pearson Chi-Square 
statistics divided by the degrees of freedom are approximately equal to one. The deviance is the 
likelihood-ratio statistic for comparing the model to the saturated model, which explains all the 
variation in the data. Values greater than one indicate the variance is an overdispersion, while values 
smaller than one indicate an underdispersion. It is possible to account for overdispersion with respect 
to the Poisson model by introducing a scale (dispersion) parameter into the relationship between the 
variance and the mean (Pedan 2001). 

Another way to address overdispersion, if it exists, is the consideration of a distribution that 
permits more flexible modeling of the variance. The negative binomial regression model is more 
appropriate for overdispersed data because it relaxes the constraints of equal mean and variance.

Negative Binomial Regression Model

The following details of negative binomial regression models related to highway large truck crashes 
were described in many studies (Miaou 1994, Schneider et al. 2009, and Daniel et al. 2002).  Consider 
a set of  n highway sections of a limited-access highway. Let Yi  be a random variable representing 
the number of large trucks involved in crashes on highway section i during the analysis period. 
Further, assume the amount of large truck travel or large truck exposure on this highway section, 
Vi , is also a random variable estimated through a highway sampling system. Associated with each 
highway section i is a k  1  vector of explanatory variables, denoted by xi = (xi1 = 1, xi2, ... ... xik)', 
describing its geometric characteristics, traffic conditions, and other relevant attributes. Given Vi , 
and xi , large truck crash involvements Yi , i = 1,2,3, ... ..., n, are postulated to be independent, and 
each is Poisson distributed as follows (Miaou 1994): 

ϑ i
=

yi yi
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(6)		

where,
λi = large truck crash involvement and
ϑi= exp (random error).

	
If a loglinear rate function is used as follows, the model becomes the negative binomial 

regression model that gives the relationship between the expected number of crashes occurring at 
the ith section with K number of parameters.

(7)
		
where,

 λi		  = number of large truck crashes on limited-access highway section i, with 
		     negative binomial distribution conditional on εi,
β0		  = constant term,
β1, ... ... , βn 	 = estimated parameters in vector form,
X1, ... ... , Xn 	 = explanatory variables in vector form, and
i	 	 = random error; exp((i) is distributed as gamma with mean 1 and variance α2. 

In the case of the Poisson regression model, coefficients βi are estimated by maximizing the log 
likelihood logeL(β) .

Assessment of the Models

In order to assess the adequacy of models, the basic descriptive statistics for the event count data 
first need to be investigated (Pedan 2001). The models developed using the relevant statistically 
significant variables are further tested for goodness-of-fit, which includes deviance statistics and 
Pearson Chi-Square statistics.

Deviance statistics are used to assess the fit of the model and overdispersion. These statistics 
are sometimes referred to as the likelihood ratio statistics or G-squared value. The G-squared value 
is the sum of deviance, and is defined as the change in deviance between the fitted model and the 
model with a constant term and no covariates. The G-squared statistics are given by (Agresti 2007):

(8)	
	
where,
	 G2 	 = deviance,
	 yi 	 = observed number of large truck crashes,
	 E(yi) 	 = expected number of large truck crashes, and
	 n	 = number of road sections.

If this statistic is significant, then the covariates contribute significantly to the model. If not, 
other covariates and/or other error distributions need to be considered. Deviance is approximately a 
chi-squared random variable with degrees of freedom (DF) equal to the number of observations (n) 
minus the number of parameters (p). A value of the deviance over (n ‒ p) that is degrees of freedom, 
suggests the model is overdispersed due to missing variables and/or a non-Poisson form. Thus, when 
deviance divided by degrees of freedom is significantly larger than one, overdispersion is indicated.
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Pearson Chi-Squared statistics are used to assess the presence of overdispersion in the model 
and are given in equation (9) (Agresti 2007):

(9)	
	
where,
	 yi	 = observed number of large truck crashes
	 λi	 = expected number of large truck crashes, and
	 n	 = number of road sections.

If value of the Chi-Squared statistics over degrees of freedom is larger than 1, overdispersion is 
also indicated. If Pearson Chi-Square statistics divided by degrees of freedom and deviance statistics 
divided by degrees of freedom are both closer to one, it indicates a better model fit.

ANALYSIS RESULTS

With consideration given to variables used in the literature and data availability, candidate variables 
were selected and the definitions of variables considered for individual road sections, along with the 
descriptive statistics, are presented in Table 2. A total of 17 explanatory variables were selected to 
be considered in the model. The existence of right rumble strip and inside (left) rumble strip were 
considered as categorical variables. As the number of lanes varies from section to section, AADT 
per lane was considered in the modeling. Maximum horizontal curvature was 4% per 100 ft of arc 
(degrees of curvature), while the maximum grade was 3.35%. There was considerable variation of 
risk across the years due to long-term trends, and changes in omitted variables such as road surface 
conditions and weather. Therefore, year-to-year changes in overall large truck crashes were captured 
using yearly dummy variables in the model.

Poisson Regression Model

A Poisson regression model was developed, taking into account the previously explained variables.  
Goodness-of-fit statistics showed that deviance/DF and Pearson Chi-Square statistic/DF were both 
slightly higher than 1.00, which suggested more variability among counts than would be expected 
for Poisson distribution. The descriptive data also indicated the overdispersion of data showed the 
mean number of crashes in a section was 0.66 with a variance of 1.34, as given in Table 2. 

One of the most common reasons for data being overdispersed is that μi parameters vary 
not only with measured covariates, but with latent and uncontrolled factors. Hence, without any 
adjustment for overdispersion, the Poisson model was not quite adequate to describe the occurrence 
of large truck crashes on limited-access highways in Kansas. Accordingly, the Poisson model was 
adjusted for overdispersion by including a scale (dispersion) parameter, as presented in Table 3. The 
scale parameter was estimated by considering a ratio of the Pearson Chi-Square to its associated 
degrees of freedom. The estimated scale parameter was 1.2145 and scaled Pearson Chi-Square was 
fixed to one.

In Table 3, the coefficient of each independent variable influencing the large truck crashes in 
the model gave the size of the exponential effect of a particular variable on the number of large 
truck crashes. The coefficients of continuous variables bearing a positive sign indicated an increase 
in large truck crashes with an increase of the variable, while a negative sign indicated a decrease in 
large truck crashes with an increase of the variable. The coefficient of dummy or indicator variables 
bearing a positive sign indicates the dummy or indicator variable switch from 0 to 1; that is an 
increase of crashes. A unit change in the variable would affect large truck crashes by an exponential 
power of that variable coefficient, if all other variables were kept constant. The variables that were 
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significant at 95% confidence interval were section length, number of lanes, lane width, horizontal 
curvature, vertical grade, AADT per lane, inside shoulder width, inside rumble strip, and yearly 
dummy variables for 2005, 2006, 2007, and 2008.

  
Negative Binomial Regression Model

The negative binomial regression model naturally accounts for the overdispersion, as its variance 
is greater than the variance of a Poisson distribution. Hence, the model developed in the previous 
section was reinvestigated using negative binomial assumptions. The maximum likelihood 
estimates of negative binomial regression model parameters, including the dispersion parameter 
and goodness-of-fit statistics, are given in Table 3. Both significant and insignificant variables were 
presented in the table because the primary objective in developing models is to understand the effect 
of each variable. The sign of the significant variables did not change after removing the insignificant 
variables from the model.

The dispersion parameter of the estimated negative binomial regression model was 0.5596. 
Since the dispersion parameter was greater than zero, the response variable was overdispersed. If 
the deviance value was equal to zero, the model was considered to be a perfect-fit model. Thus, the 
lowest deviance value was considered to have a better fit. Pearson Chi-Square statistics divided by 
degree of freedom, and deviance statistics divided by degree of freedom closer to one, indicated a 
better model fit. Scaled deviance statistics divided by degree of freedom (0.804) were closer to one 
in the developed negative binomial regression than that of the Poisson regression model (0.771). 
Hence, the negative binomial model was selected as the better model that can be used to identify the 
relationship between number of large truck crashes and traffic and geometric-related characteristics 
on limited access roadways.

Each significant variable in the negative binomial model affected the number of large truck 
crashes and the magnitude of the coefficient gave the size of the exponential effect of that variable 
on the number of large truck crashes. The coefficients of continuous variables bearing a plus sign 
indicate an increase in large truck crashes due to the variable, while a minus sign indicates a decrease 
in large truck crashes with an increase in the variable. Coefficient of dummy or indicator variables 
bearing a positive sign indicated that when the dummy or indicator variable switches from 0 to 1 
there is an increase in number of crashes.  The significant variables in the negative binomial model 
were section length, number of lanes, horizontal curvature, vertical grade, AADT per lane, large 
truck percent, inside shoulder width, and annual dummy variables, 2005-2008. The effect on the 
number of large truck crashes from each of these variables is explained below.

Length of Section: The negative binomial model showed that section length has a positive sign, 
signifying that for a unit increase in length of a section, crash frequency also increases if all other 
variables are kept constant. The effect of section length on expected crash frequency showed that 
shorter sections were less likely to have more large truck crashes than longer sections. This finding 
was expected and compatible with previous findings on the relationship between length of section 
and large truck crash frequencies (Miaou 1994, Schneider et al. 2009, Joshua et al. 1990).

Number of Lanes: The variable for number of lanes was significant with a positive coefficient. This 
means that as the number of lanes increases, opportunities for conflicts related to lane changes also 
increases, thereby increasing the number of crashes. This was also found by previous researchers 
(Miaou 1994). 

Horizontal Curvature: The horizontal curvature-related variable indicated large truck crashes were 
less likely on sharp curves.  This finding was rather difficult to explain, even though it is compatible 
with some of the previous findings (Daniel et al. 2002, Milton and Mannering 1998). The variable, 
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Table 3: Developed Poisson Regression Model and Negative Binomial Model 

Variable Description
Poisson Regression 

Model
Negative Binomial 

Model
Estimate P-value Estimate P-value

Intercept -14.260 <0.001 -3.775 <0.001
SEC_LEN Section length (in mile) 0.1738* <0.001 0.2231* <0.001
L_WIDTH Lane width (in ft) 0.1363* 0.010 0.0491 0.348
SPEED Posted speed limit (in mph) -0.0068 0.302 0.0067 0.331
NUM_LANE Number of lanes 0.0927* <0.001 0.0652* 0.013

HC Horizontal curvature (in degree per 
100ft arc) -0.6097* <0.001 -0.5622* <0.001

VG Vertical grade -0.4348* <0.001 -0.3916* <0.001
AADT AADT of the traffic stream per lane 0.1592* <0.001 0.2035* <0.001
TRUCK Large Truck Percent** - - 0.0141 <0.001
R_SHOULD Right shoulder width in ft 0.0360 0.217 0.0069 0.802
IN_SHOULD Inside shoulder width in ft 0.0697* <0.001 0.0863* <0.001
Y_2005 Dummy variable for year 2005  0.3706* <0.001 0.3691* <0.001
Y_2006 Dummy variable for year 2006 0.2289* <0.001 0.2266* 0.002
Y_2007 Dummy variable for year 2007 0.1915* 0.001 0.2629* <0.001
Y_2008 Dummy variable for year 2008 0.1546* 0.002 0.2110* 0.001
Y_2009 Dummy variable for year 2009 -0.1209 0.071 -0.0984 0.1404
MD_SHOULD Median width in ft -0.0017 0.217 -0.0005 0.698

R_RUMBLE Dummy variable for right rumble 
strip 0.0501 0.470 -0.0590 0.447

IN_RUMBLE Dummy variable for inside rumble 
strip -0.2532* 0.001 -0.1071 0.215

Scale 1.2145 -
Dispersion - 0.5596
Goodness-of-Fit Statistics 

Criterion Value Value/DF Value Value/DF
Deviance 8,256 1.138 5,897 0.813
Pearson Chi-Square 10,701 1.475 7,338 1.011
Scaled Deviance 5,597 0.771 5,830 0.804
Scaled Pearson Chi-Square 7,255 1.000 7,255 1.000
Number of Observations (road sections) 7,273 7,273

Note: * Significant values at 95% confidence level
** Large truck percent in Poisson regression model was considered as an exposure variable

horizontal curvature, works in conjunction with the length of the section; hence, the net effect of a 
horizontal curvature on large truck crash frequencies seems to be inconclusive, as some of the past 
studies found a positive relationship between large truck crash frequencies and horizontal curvature 
(Miaou 1994, Mohamedshah et al. 1993, Schneider et al 2009), while others did not.

Vertical Grade: Vertical grade was negatively correlated with large truck crash frequency. One 
possible explanation was that curves in vertical plane on a limited-access highway consist of minor 
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initial grades and adequate sight distances. The combination of upgrades and downgrades may not be 
giving a clear relationship between the vertical grades and large truck crash frequencies. However, 
many previous studies have used the absolute value of vertical grade as an independent variable 
when modeling the crash frequencies (Miaou 1994,  Mohamedshah 1993, Joshua and Garber 1990). 
The negative relationship between truck crashes and vertical grade was also found by Daniel et al. 
(2002) when investigating intersection-related crashes. 

AADT per Lane: An increase in AADT per lane tended to increase large truck crash frequency. 
As the number of vehicles through a section increases, exposure to potential crash situations and 
number of conflicts also increases. This finding was expected, and a relationship was also found in 
previous studies by Miaou (1994) and Mohamedshan et al. (1993).

Large Truck Percent: Positive coefficient of the large truck percent in the model indicated that 
as the percentage of large trucks through a section increases, the number of crashes increases. This 
is consistent with the expectation that the number of truck crashes should increase if there are 
proportionally more large trucks. Some of the previous research has found that large truck crash 
frequency decreases with an increase in the percentage of large trucks (Miaou 1994, Milton and 
Mannering 1998). The explanation in those studies was that the presence of more large trucks reduced 
vehicle overtaking and lane changing behaviors, which are more crucial for safety. However, if and 
when the AADT is relatively low, even a few additional trucks on roadways increase the truck 
percentage (Milton and Mannering 1998). Thus, large truck crashes may decrease in some cases 
when AADT is low, because of lack of conflicts, not because of an increase in large trucks. Another 
study has shown that the number of large truck crashes increases with an increase in large truck 
AADT (Schneider et al. 2009). Hence, large truck percentage works in conjunction with the AADT, 
making large truck percentage to be another inconclusive variable.

Inside Shoulder Width: Inside shoulder width had a positive correlation with the number of large 
truck crashes, meaning the number of crashes increases when inside shoulder width increases. A 
similar relationship has been found by Ivan et al. (1999) when analyzing two-lane rural highways. 
However, with narrower shoulder widths, drivers have less room to take corrective actions after 
making an errant maneuver, and drivers are more likely to be involved in fixed-object crashes with 
the reduced widths. Hence, it was expected to see a decreased number of large truck crashes when 
shoulder width was increased. So the result was not expected.

Yearly Dummy Variables: The coefficient of yearly variables for 2005, 2006, 2007, and 2008, 
which represented unmeasured factors, was positive and significant. This means the overall number 
of large truck crashes increased due to unmeasured factors not included in the model. Similar 
findings were documented by Miaou (1994).

In this study, absolute values for the variables’ vertical grade and horizontal curvature were 
used because the considered analysis unit includes both directions of travel. A positive gradient 
value for one direction is a negative for the other direction. One possible way to address this issue is 
to model the crashes on one direction of travel at a time; however, many previous research studies 
modeled crashes on both directions considering the absolute values of horizontal curvature (Miaou 
1994, Joshua and Garber 1990, Schneider et al. 2009). The reason that the variable on horizontal 
curvature was inconclusive may also be due to segmentation issues; however, modeling without 
considering horizontal curves sections did not affect the results on how other variables are affecting 
the outcome either. Variables such as speed limit, shoulder width, and road width have certain fixed 
values for each road segment. Hence, these can be defined either as categorical or dummy variables, 
which might have had some effect on the outcome. Some of the results such as horizontal curvature, 
vertical grade, and inside shoulder width, from the Poisson regression model and negative binomial 
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model were not as expected. Hence, advanced model formats such as random parameter negative 
binomial model or Zero-Inflated models may be tested in the next steps, to check whether that might 
lead to a more robust model.

Based on the developed model, the relationship between large truck crashes and geometric 
design features, traffic, and other characteristics were identified. The identified effective parameters 
in large truck crashes can be considered as the criteria for improving highway safety. According to 
the developed models, it can be concluded that the variables such as number of lanes, AADT, and 
large truck percent have a specific impact on large truck crashes. Developed models can be used to 
identify target improvements to limited-access highways to reduce large truck crashes. Also, these 
can be used to form public policy and highway design criteria. This understanding offers important 
insight into the relationship between safety and mobility that will improve the quality of decisions 
made by practicing engineers and planners.

DISCUSSION

In roadway designing, features normally considered are road cross-section elements such as 
roadway median, utility and landscape areas, drainage channels and side slopes; sight-distance 
considerations; and horizontal/vertical curvatures as per the design guides. One of the most 
important factors in design of a limited-access highway facility is design speed.  For urban areas, 
the designer needs to select a reasonable design speed, considering access restrictions and type of 
access control that can be achieved.  Limited-access roadways need to be designed with smooth-
flowing horizontal and vertical alignments. Proper combination of horizontal curvature, grades, and 
median types are expected to provide safety and aesthetics of roadways. The dimensions, weight per 
axle, and operating characteristics of a vehicle influence design aspects such as width of the lane and 
curvature. Additionally, consideration of human, traffic, and environmental factors are important in 
designing roadways as well (Bonneson and Lord 2005). 

In recent years, a number of studies have been conducted on geometric design features, safety 
and operational effect of those designs, and how they influence other activities. The National 
Cooperative Highway Research Program has reported those findings in Synthesis Report 432 (Brewer 
2012). According to the report, large trucks are given important consideration in the geometric 
design. Some research has given several recommendations for updating existing design guides. 
Lamm et al. (2002) have developed a process to evaluate the safety of horizontal alignment on 
two-lane rural roads. This methodology allows designers to predict potential crash risks and safety-
related concerns of an alignment, and make changes or develop countermeasures. The occurrence of 
crashes on two-lane highways is different than on multilane divided highways, but a similar process 
for evaluating the safety of horizontal alignment on multilane highways may be developed. 

Engineers and transportation planners make decisions to add travel lanes on a freeway when 
they find the capacity of the road needs to increase. According to results of this study, the number 
of large truck crashes increases when the traffic volume increases. Engineers and planners may 
believe that decreased traffic is associated with some degree of improved safety. However, results 
also showed that crashes increase with an increase in the number of lanes. Hence, the introduction of 
barrier-separated lanes, express lanes, and managed lanes such as toll roadways and dual-dual lanes 
are effective strategies to offset the increase of conflict opportunities associated with an increase in 
the number of lanes (Kononov et al. 2008). Dual-dual lanes are managed lanes that have physically 
separated inner and outer lanes in each direction. The inner lane is reserved for light vehicles, while 
the outer roadway is open to all vehicles. These lane strategies are a treatment for a specific section 
of roadway that has a unique set of characteristics such as vertical grades, weaving area, and high 
percentage of large truck traffic.

The percent increase of large truck traffic is increasing the number of large truck crashes. 
This is an important matter for all drivers because it affects speed of travel, safety, comfort, and 
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convenience. Hence, many transportation agencies have implemented a variety of countermeasures 
for large trucks in an attempt to mitigate the effects of increasing large truck traffic. One such 
example is exclusive truck lanes (Kuhn et al. 2005).  California operates an exclusive truck roadway 
on IH-5 in the Los Angeles area. While other vehicles are allowed to use the roadway, trucks are 
the primary users. This limited-access road section that includes vertical grades allows slower truck 
speeds than the free-flow speed of other vehicles, especially in the uphill direction. The Managed 
Lanes Handbook suggests exclusive barrier-separated truck lanes if truck volumes exceed 30% of 
the vehicle mix, peak-hour volumes exceed 1,800 vehicles per lane-hour, and off-peak volumes 
exceed 1,200 vehicles per lane-hour (Kuhn et al. 2005).

The focus of this study was limited to the investigation of the relationship between roadway 
geometric characteristics and large truck crashes. However, countermeasures for improving safety 
are not only limited for geometric improvements but also improvements in pavement markings, 
traffic signs, roadside improvements, lighting, and changing regulations. According to results, the 
percent increase of truck traffic is increasing the number of truck crashes. To mitigate the effects 
of increasing truck traffic, exclusive truck lanes can be used. However, just by increasing number 
of lanes, fewer truck crashes cannot be expected as results showed a positive relationship between 
number of lanes and truck crash frequency. Table 4 shows a general countermeasure list that could 
be used to improve the safety of roadways focusing on all possible areas (Washington et al. 2002). 
For example, if the case of sharper horizontal curves cannot be avoided, countermeasures such 
as warning signs can be used to provide enough guidance to the driver. Widening and improving 
clear zones is an alternative countermeasure, which also helps to reduce run-off-road crashes. This 
may include flattening side slopes, removal of roadside obstacles, and increasing available stopping 
distance adjacent to the road. As identified in this study, geometric changes such as horizontal 
alignments decrease large truck crash frequency. Geometric alternations may be considered when 
other less costly countermeasures are not effective and when the current roadway geometry designs 
can significantly benefit from improvements. Before implementing countermeasures, the most 
effective countermeasures and specific conditions for which they are effective need to be identified. 
The countermeasures related to road geometry and traffic conditions discussed in this paper are 
related to preventing large truck crashes, but preventing or reducing the number of truck crashes 
overall improves traffic safety as well.  Not all countermeasures can be implemented simultaneously. 
Also, some countermeasures are less effective when introduced in isolation.

SUMMARY AND CONCLUSIONS

Traffic- and geometric-related data and crash data for limited-access roads were utilized in this 
study to model or predict large truck crash frequency in Kansas. Data yielded 7,273 homogeneous, 
limited-access roadway segments which had speed limits of more than 55 mph and lengths of more 
than 0.25 miles. Poisson and negative binomial regression models were used to estimate the effects 
of independent variables. According to the coefficients of the developed negative binomial models, 
large truck crash frequency increased when the length of a section, the number of lanes, AADT per 
lane, and inside shoulder width increased. Vertical grades were significantly negatively correlated 
with large truck crash frequency. Also, the overall number of large truck crashes increased due to 
unmeasured factors that were not in the model.

The results of the negative binomial model may be used for improvement to limited access 
highways and to prevent or mitigate large truck crashes. Large trucks need to be given important 
consideration in the geometric design. Revision of existing design guides needs to take into account 
current dimensions of large trucks and vertical curvature considerations.  A process for evaluating 
the safety of horizontal alignment on multilane highways can be an effective countermeasure. 
This process allows designers to predict potential crash risks and safety-related concerns of an 
alignment, and make changes or develop countermeasures. Introduction of exclusive truck lanes, 
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barrier-separated lanes, express lanes, and managed lanes such as dual-dual lanes and toll roadways 
are effective strategies to offset the increase of conflict opportunities associated with an increase in 
the number of lanes. Warning signs on approaching curves and widening and improving clear zones 
are countermeasures for decreasing large truck crash involvement.  This research provides a step to 
identifying traffic- and geometric-related factors that contribute to large truck crashes.
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