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Equipment Replacement Decision Making:
Opportunities and Challenges
by Wei (David) Fan, Mason D. Gemar, and Randy Machemehl

The	primary	 function	of	equipment	managers	 is	 to	replace	 the	right	equipment	at	 the	right	 time	
and	 at	 the	 lowest	 overall	 cost.	 In	 this	 paper,	 the	 opportunities	 and	 challenges	 associated	 with	
equipment	replacement	optimization	(ERO)	are	discussed	in	detail.	First,	a	comprehensive	review	
of	the	state-of-the	art	and	state-of-the	practice	literature	for	the	ERO	problem	is	conducted.	Second,	
a	dynamic	programming	(DP)	based	optimization	solution	methodology	is	presented	to	solve	the	
ERO	problem.	The	Bellman’s	formulation	for	the	ERO	deterministic	(DDP)	and	stochastic	dynamic	
programming	 (SDP)	 problems	 are	 discussed	 in	 detail.	 Finally,	 comprehensive	 ERO	 numerical	
results	and	implications	are	given.

INTRODUCTION

As assets age, they generally deteriorate, resulting in rising operating and maintenance (O&M) 
costs and decreasing salvage values. Furthermore, newer assets that are more efficient and better at 
retaining their value may exist in the marketplace and be available for replacement. The conditions 
of deterioration and technological changes motivate public and private agencies that maintain fleets 
of vehicles and/or specialized equipment to periodically replace vehicles composing their fleet.  
This decision is usually based upon a desire to minimize fleet costs, which typically include the 
acquisition, operating and maintenance cost, and salvage value over a definite or infinite horizon. 

Much research has been undertaken in equipment replacement optimization (ERO), including 
the Texas Department of Transportation’s (TxDOT) ongoing equipment replacement optimization 
efforts. A detailed review of the state-of-the art and state-of-the-practice literature of the ERO 
problem and commercial fleet management systems currently available worldwide is available 
elsewhere1. That review shows that previous research efforts made can be classified into and solved 
using three solution approaches.

The first is the Minimum Equivalent Annual Cost approach (EAC).  In this approach, the most 
basic ERO problem is studied under the assumption of no technological change over an infinite 
horizon (i.e., the equipment is needed indefinitely). This assumption is sometimes referred to as 
“stationary cost” by some researchers1 in the sense that an asset is replaced with the purchase of a 
new, identical asset with the same cost. Under this assumption, the optimal solution to the infinite-
horizon equipment replacement problem with stationary costs is to continually replace an asset at 
the end of its economic life. Once determined, the asset should be continuously replaced at this age 
under the assumption of repeatability and stationary costs.1

The second is the Experience/Rule-based approach, which is used in many state DOTs to 
make keep/replacement decisions for equipment, particularly during the early stages of ERO 
implementation. For example, TxDOT uses threshold values for age, equipment use, and repair cost 
as inputs for replacement (TxDOT Equipment Replacement Model - TERM 2004). This approach 
can work well for the fleet manager under certain circumstances. For example, current threshold 
values for dump trucks with tandem rear axles for age, use, and repair cost are 12 years, 150,000 
miles, and 100%, respectively. As a result, a State Series 990d dump truck with tandem rear axles, 
a gross vehicle weight of more than 43,000 pounds, which is 12 years old, is considered as having 
accumulated 150,000 miles of use and repair costs of more than 100% of the original purchase 
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cost (including net adjustments to capital value). Despite its simplicity, the use of this rule depends 
heavily upon the fleet manager’s engineering judgment and experience with ERO. 

The third is the Dynamic Programming (DP) approach in which the solution of continuously 
replacing an asset at the end of its economic life based on the minimum EAC method is optimal 
only under the assumptions of an infinite horizon and stationary costs. However, many situations 
occur in practice in which an asset is required for a finite length of service (i.e., finite horizon). In 
particular, if the costs (including operating and maintenance cost and salvage value) are age based, 
assuming constant or predetermined utilization over a finite horizon, the DP approach is commonly 
used to solve the ERO problem. An example that uses the DP approach can be seen in Nair and Hopp 
(1992). Recently, Richardson et al. (2013) used a new real options approach to solving the optimized 
asset replacement strategy in the presence of lead time uncertainty.

There have been numerous researches on ERO with finite time horizon using the Deterministic 
Dynamic Programming (DDP) approach (Hartman and Murphy 2006, Hartman and Rogers 2006, 
Hillier and Liberman 2005, Wolsey 1998, Nemhauser and Wolsey 1999). However, almost all 
previous researches are devoted to the DDP solution formulation and its limited applications to 
extremely simplified case studies and/or small examples. To the best knowledge of the authors, 
there have been no research efforts made so far (except Fan et al. 2012a, 2012b, and Figliozzi et al. 
2011) to apply such DP approaches to solving the real-world ERO problem. In previous research, a 
comprehensive DP-based optimization solution methodology has been developed to solve the ERO 
problem. The developed ERO software consists of three main components: a SAS Macro-based 
Data Cleaner and Analyzer, which undertakes the tasks of raw data reading, cleaning, and analyzing, 
as well as cost estimation and forecasting; a DP-based optimization engine that minimizes the 
total cost over a defined time horizon; and a Java-based Graphical User Interface (GUI) that takes 
parameters input by users and coordinates the Optimization Engine and SAS Macro Data Cleaner 
and Analyzer. 

When using the DDP approach, both vehicle usage and annual operating and maintenance 
costs are assumed to be constant or predetermined. However, due to randomness in real operations, 
these expected equipment utilizations are not normally realized in practice, thus invalidating the 
replacement optimization decisions in some aspects. 

The stochastic dynamic programming (SDP) approach is undoubtedly the preferred approach to 
solving the ERO problem because it can explicitly consider the uncertainty in vehicle utilization and 
the annual operating and maintenance cost accordingly. Meyer (1971), perhaps due to computational 
constraints, is one among the very few to study the ERO problem under uncertainty. With advances 
in computing technology, a lot of research has been done to examine the ERO problem under 
uncertainties during the past decade, as can be seen in Hartman and Rogers (2006). However, 
none of these previous researches, except Fan et al. (2012b) and Figliozzi et al. (2011), uses real-
world fleet cost/usage data, and all are limited and based on small examples. As a result, many 
underlying characteristics of the ERO SDP problem have yet to be explored and identified. To the 
best knowledge of the authors, this is the first ERO SDP software that is targeted at a real-world 
application (using TxDOT’s current fleet data) and can explicitly consider uncertainty in vehicle 
utilization and annual operating and maintenance cost. This software is very general and can be used 
to make broad statements regarding the ERO problem.  Nonetheless, it demonstrates the software’s 
promising feasibility for large-scale applications. When enough cost/mileage data are collected, the 
SDP-based optimization solution can be of immediate use and will yield substantial cost savings for 
years to come in the fleet management industry worldwide.
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ERO MODEL FORMULATION

General DP Characteristics 

Following Bellman (1995), the basic features that characterize DP solution algorithms can be 
presented as follows: The problem can be divided into stages with a policy decision required at 
each stage. The stages are usually related to time and are often solved by going backwards in time. 
Each stage has a number of states associated with it. The decision at each stage transforms the 
current state at this stage to a state associated with the beginning of the next stage (possibly with 
a probability distribution applied). The solution procedure is designed to find an optimal policy 
for the overall problem, i.e., a prescription of the optimal policy decision at each stage for each of 
the possible states. Given the current state, the optimal policy decision for the remaining stages is 
independent of decisions made in previous stages. The solution procedure begins by finding the 
optimal policy for the last stage. A recursive relationship is available to traverse between the value 
of the decision at a stage N and the value of the optimum decisions at previous stages N+1. When 
using the recursive relationship, the solution procedure starts at the end and moves backward stage 
by stage – each time finding the optimal policy for that stage – until the optimal policy starting at the 
initial stage is found (Bellman 1995, Bellman 2003, Bertsekas 2001, Wagner 1975, Waddell 1983, 
Hartman 2005, Hartman and Murphy 2006).

DP can generally be classified into two categories: DDP and SDP. For DDP, the state at the 
next stage is completely determined by the state and policy decision at the current stage. In SDP, the 
state at the next stage is not completely determined by the state and policy decision at the current 
stage. Rather, there is a probability distribution applied for what the next state will be. However, 
the probability distribution is still determined entirely by the state and policy decision at the current 
stage (Bellman 2003, Wagner 1975, Meyer 1971). In SDP, the decision maker’s goal is usually to 
minimize expected (or expected discounted) cost incurred or to maximize expected (or expected 
discounted) reward earned over a given time horizon. 

DP Model Formulation

The TxDOT fleet manager identifies equipment items as candidates for equipment replacement 
one year in advance due to the fact that generally one year is required to allow sufficient time 
for procurement and delivery of a new unit of equipment. Since the TxDOT fleet manager makes 
decisions as to whether to keep or replace a piece of equipment at the beginning of each year, it is 
very natural to consider each year a stage. As a result, the year count (or index) is the stage variable 
in this paper and the age of the equipment in service at the beginning of each year is the state 
variable. The TxDOT fleet manager highly recommends that all equipment be salvaged at the end 
of a planning horizon of 20 years. In other words, it is assumed that an equipment unit will be kept 
no longer than 20 years. It is expected that the value of the planning horizon selected by the fleet 
manager may have some impacts on the equipment optimal keep/replacement decisions. However, 
it is also believed that 20 years is a very reasonable value and is therefore highly recommended for 
ERO problems of state DOTs.

The equipment purchase cost model is year-based, the annual operating and maintenance cost 
and the usage of the equipment unit are both age-based, and the salvage values are dependent upon 
both the model year and equipment age. All these data come from SAS as outputs of the SAS macro- 
based Data Cleaner and Analyzer and act as inputs to the DDP-based optimization engine. Moreover, 
it is realized that it is standard practice to allow for discounting of future costs in any DDP model 
and solution process. Put another way, solving the ERO problem using the dynamic programming 
approach requires all costs (such as annual operating and maintenance costs, including all repairs, 
regular maintenance and down time penalty costs, and salvage values, as well as purchase costs of 
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the new model year). At each stage, such costs must be converted from the equipment model year 
(for the equipment purchase cost) and/or calendar year (for annual operating and maintenance costs 
and salvage value) to a benchmark year using an inflation rate. Such calculations for the discounting 
of future costs have been successfully performed.1 

DP SOLUTION APPROACH

Bellman’s Formulation for the ERO DDP Problem

Bellman (1995, 2003) introduced the first DDP solution to the finite horizon equipment replacement 
problem where the age of an asset defines the state of the system with the decision to keep or replace 
an asset made at the end of each period (stage). This paper implements the Bellman DDP approach 
so that the solution caters to TxDOT’s needs in solving the ERO problem. 

In a typical Bellman network, each node represents the age and the usage (i.e., mileage/hours) 
of the asset at that point in time, which is also the state space of the model. Each arc represents 
the decision to either keep (K) or replace (R) an asset. Keeping the asset connects nodes n (i.e., 
n-year-old) and n+1 (i.e., n+1-year-old) while replacing the asset is shown by an arc connecting 
n and zero. An optimal policy with this model, in the form (K, K, R, K, K, …),  gives the optimal 
decision at the beginning of each year. If an asset can be retained for a maximum of  periods, then 
the maximum number of states in a period is N. For an N-period problem, since there are a maximum 
of two decisions for any state, the problem can be solved using the following calculation: O (State 
of year 1 + State of year 2 + … + State of year N) = O (1 + 2 + 3 + … + N + 1) = O(  ) where 
O represents computer complexity. Therefore, the computer complexity of Bellman’s algorithm is 
O(N	2).  Again, detailed information about Bellman’s equation for the ERO DDP problem can be 
seen elsewhere.1

Bellman’s Formulation for the ERO SDP Problem

When Bellman’s approach is used in the SDP method to solve an ERO problem, a phenomenon, 
commonly termed “curse of dimensionality,” appears. For example, the ERO SDP solution 
procedure, without scenario reduction treatment, has a general state-space issue that can result in 
exponential growth in computer memory and software computational time with increases in time 
horizon. Careful consideration and special treatments have been used to resolve these issues, and the 
computer complexity for stochastic dynamic programming is still O(N2) using the special treatment 
methods developed by Fan et al. (2012b).

Figure 2 shows a complete “Keep-Replace” Bellman formulation example starting with a 
brand-new equipment unit for the ERO SDP problem, with uncertainty in vehicle utilization for the 
SDP-2Level case, after conducting the scenario reduction treatment. In Figure 2, the square nodes 
represent the decision to either keep or replace the equipment unit. The circular nodes represent 
chance nodes, as the equipment utilization level is uncertain and the path taken from these nodes 
defines the cumulative equipment utilization in the next stage. The path taken from the circular nodes 
are defined as  and  which represent two feasible (i.e., the high and low) equipment utilization levels. 
Additionally, all nodes at time N are connected to a dummy node at time N+1, which represents 
the salvage value of the equipment unit after the final stage of the finite horizon problem. It should 
also be noted that the total cost would include the purchase cost, the expected annual operating and 
maintenance cost, and salvage value, as previously mentioned.
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Figure 1: Bellman’s Formulation

Figure 2: SDP Formulation for ERPO Under Asset Utilization
   Uncertainty: Two-Level Case with Scenario Reduction Treatment
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SOFTWARE DEVELOPMENT AND FUNCTIONALITIES

SDP Computer Implementation Techniques

To successfully implement the Bellman formulation to solve the ERO SDP problem, an efficient 
and effective data structure is designed and then implemented by developing Java computer 
programs. The model year-based equipment purchase cost, the equipment age- and model year-
based salvage value, and the equipment age- and mileage-based annual operating and maintenance 
cost data, along with corresponding probability distribution for each year that come from SAS are 
read and processed by the Java codes through three steps/layers within the optimization engine. 
The first layer is reading the equipment class code, the second layer is reading the equipment age, 
and the third layer is reading the equipment utilization and associated probability (to accommodate 
the different equipment utilization levels). A series of dynamically allocated arrays are developed 
to store the data1. The Bellman approach, as presented earlier, is then solved backward and the 
recursive functions are called efficiently.

SDP Software Development and Functionalities

The developed DDP software considers two approaches for the ERO problem: First, it assumes 
that the “current trend” continues. That is, it uses all the information from the current TERM data 
that are “error- and outlier-free” and assumes that the same trend will continue for future years. For 
example, the current TERM data show that equipment utilization decreases as equipment gets older 
and therefore it is assumed that this trend will continue1. Second, it assumes “equal utilization.” That 
is, it takes the average mileage across all equipment with the same class code and uses this number 
for the utilization of all equipment during that year. Even with this, it is noteworthy that year-to-year 
utilization for the same class code can be different. In subsequent sections, numerical results are 
presented to show an example of the differences in the equipment keep/replace decisions between 
these two approaches.

Many other functions have been incorporated into the DP-based ERO software, including the 
following: The software allows the user to specify budget constraints, as well as the time window 
that the programming will use during optimization. The software allows users to selectively “clean 
the data” by removing missing data related to any cost and mileage variables and outliers associated 
with any non-missing data. And the users can run the software using SAS automatically generated 
cost data or use editable cost data that they provide manually at the beginning of each year. The 
user can choose from several different approaches, namely: current “cost trend” or cost “equal 
utilization” (as explained earlier in this section), DDP or SDP, and the Bellman (1995, 2003) or 
Wagner (1975), all mentioned and defined before. The user can also choose to delay the equipment 
replacement or replace it early by specifying a positive or negative delay time. The software can 
also run an optimization on any individual used piece of equipment from a specific class code, on 
all equipment units from one specific class code or from class codes, or on brand new equipment 
units from either one specific class code or all class codes. The software gives an EXCEL report 
for the cost savings by comparing the optimal solution with the benchmark rules, and it provides an 
EXCEL report summarizing the cost savings by comparing the optimal solution with the “delay by 
N years” option or the “ignore the optimized decision” option. Finally, users can add new annual 
TERM data at the beginning of each year and make dynamic keep/replace decisions for any chosen 
class code or equipment unit.
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OPPORTUNITIES AND CHALLENGES 

The developed ERO solution software in this paper is very general and can be used to make optimal 
keep/replace decisions with or without uncertainty in vehicle utilization for both brand-new and used 
vehicles, both with or without annual budget considerations. In other words, the methodology can 
be used to: provide a general guide for the equipment keep/replacement decisions (i.e., how many 
years to keep) for a particular class code containing brand-new equipment without considering any 
budget constraints; and select equipment units for annual replacement from a solution space that 
is composed of all the candidate equipment units that are eligible for replacement based on the 
annual budget and other constraints, if any. Also, it should be noted that all numerical results are 
essentially dependent upon the specific class code chosen. However, after comprehensive testing, it 
was found that numerical results of all class codes seem to follow similar patterns and exhibit some 
shared general characteristics. In this regard, the following section uses the real TxDOT TERM data 
(TERM 2004) and describes some interesting and representative numerical results using two class 
codes, 420010 and 520020, as an example for light vehicle and heavy vehicle classes, respectively. 
Related characteristics are discussed as follows.

Opportunities

The computational time of the ERO software for all class codes and each solution approach was 
examined. It was found that the computational time is very uniform for the DDP and SDP 2-Level 
approaches and it takes an average of 10 seconds for the software to provide the best optimized 
decision for each class code. It takes a total of about 32 minutes to loop through all (i.e., 194) 
class codes and output all optimized solutions in an EXCEL file for the “current trend” or “equal 
utilization” approach. However, the SDP 3-Level approach appears to be less uniform and most 
class codes take more time to run; the average for this approach was nearly 30 seconds for the 
ERO software to provide the best optimized decision for each class code with probabilistic vehicle 
utilization. Therefore, it takes a total of about 97 minutes to loop through all (i.e., 194) class codes 
and output all optimized solutions in an EXCEL file for the “current trend” approach in which the 
probability distribution of the vehicle utilization is forecasted based on the historical data.

A comparison of the quality of the DDP solution, the SDP 2-Level and 3-Level optimization 
solutions, and the current benchmark solutions for class codes 420010 and 520020 is given in Table 
1. As can be seen, the objective function values (represented in dollar value) for each DP approach 
are smaller (more desirable) than for the corresponding benchmark solutions for both class codes. 
This is expected because each DP approach ensures that all solution paths (which certainly include 
the current purely experience-based replacement benchmark solution) are explored by solving 
backward. This guarantees that the best solution is also found by selecting the solution path with 
minimum total cost over the definite horizon (determined by the benchmark year).

In addition, the total cost of the benchmark solutions for the DDP, SDP 2-Level, and SDP 
3-Level approaches are all different. This is expected because the DDP approach uses the class code-
level cost/mileage forecast for all future years to calculate the benchmark decision year. On the other 
hand, both SDP approaches generate and use cost/mileage forecasts for each individual class code 
and all the vehicle utilization levels (low-high for 2-Level, or low-medium-high for 3-Level) and 
their associated probability distributions for all future years to determine the benchmark decision 
year. This can cause the expected cost/mileage data to be slightly different between the different 
solution approaches.

As one can see from Table 1, using class code 420010 with the “current trend” approach as 
an example, the SDP 2-Level approach results in the most savings and suggests five replacements 
over the 20-year window, while the benchmark solution suggests replacement at years 10 and 20 
only. While the SDP 3-Level solution and the DDP solution offer similar replacement strategies, the 
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Table 1: Solution Comparisons Between DDP, SDP, and Current Benchmark Solutions for   
               Class Codes 420010 and 520020

 

Year 

DDP Approach SDP 2-Level Approach SDP 3-Level Approach 

DDP Solution Benchmark Solution SDP Solution Benchmark Solution SDP Solution Benchmark Solution 

Decision Cost Decision Cost Decision Cost Decision Cost Decision Cost Decision Cost 

Classcode 

420010 

1 K $2,881.39 K $2,881.39 R $5,269.29 K $2,469.76 K $2,469.76 K $2,469.76 

2 R $9,050.29 K $3,320.66 R $6,101.20 K $3,448.38 R $8,794.86 K $3,065.23 

3 K $2,881.39 K $3,782.13 K $2,469.76 K $3,696.17 K $2,469.76 K $3,724.82 

4 K $3,320.66 K $4,256.11 K $3,448.38 K $4,038.96 K $3,065.23 K $4,198.20 

5 K $3,782.13 K $4,732.92 K $3,696.17 K $4,503.90 K $3,724.82 K $4,783.81 

6 K $4,256.11 K $5,202.88 K $4,038.96 K $5,070.60 R $15,601.30 K $4,967.72 

7 R $17,989.34 K $5,656.32 R $17,760.33 K $5,556.50 K $2,469.76 K $5,478.87 

8 K $2,881.39 K $6,083.55 K $2,469.76 K $6,007.50 K $3,065.23 K $5,779.37 

9 K $3,320.66 K $6,474.89 K $3,448.38 K $6,474.89 K $3,724.82 K $6,151.15 

10 K $3,782.13 R $25,673.63 K $3,696.17 R $25,478.75 K $4,198.20 R $25,413.79 

11 K $4,256.11 K $2,881.39 K $4,038.96 K $2,469.76 K $4,783.81 K $2,469.76 

12 K $4,732.92 K $3,320.66 K $4,503.90 K $3,448.38 R $21,279.03 K $3,065.23 

13 R $21,887.57 K $3,782.13 R $21,755.29 K $3,696.17 K $2,469.76 K $3,724.82 

14 K $2,881.39 K $4,256.11 K $2,469.76 K $4,038.96 K $3,065.23 K $4,198.20 

15 K $3,320.66 K $4,732.92 K $3,448.38 K $4,503.90 K $3,724.82 K $4,783.81 

16 K $3,782.13 K $5,202.88 K $3,696.17 K $5,070.60 K $4,198.20 K $4,967.72 

17 K $4,256.11 K $5,656.32 K $4,038.96 K $5,556.50 K $4,783.81 K $5,478.87 

18 K $4,732.92 K $6,083.55 K $4,503.90 K $6,007.50 K $4,967.72 K $5,779.37 

19 K $5,202.88 K $6,474.89 K $5,070.60 K $6,474.89 K $5,478.87 K $6,151.15 

20 R $26,202.97 R $29,674.69 R $26,103.16 R $29,479.81 R $27,230.39 R $29,414.86 
 Total $135,401.15 Total $140,130.02 Total $132,027.48 Total $137,491.88 Total $131,565.38 Total $136,066.51 
 Cost Savings $4,728.87   Cost Savings $5,464.40   Cost Savings $4,501.13   

520020 

1 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 

2 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 

3 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 

4 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 

5 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 

6 K $6,582.32 K $6,582.32 R $39,399.23 K $6,582.33 K $6,582.32 K $6,582.32 

7 K $7,343.55 K $7,343.55 K $1,865.53 K $7,343.55 K $8,567.48 K $8,567.48 

8 K $8,033.85 K $8,033.85 K $2,915.71 K $10,042.31 K $8,033.85 K $8,033.85 

9 R $47,607.00 K $8,648.84 K $3,916.86 K $10,090.31 R $47,607.00 K $8,648.83 

10 K $1,865.53 K $9,184.14 K $4,864.60 K $11,152.17 K $1,865.53 K $8,309.46 

11 K $2,915.71 R $52,129.15 K $5,754.55 R $53,735.05 K $2,915.71 R $49,987.96 

12 K $3,916.86 K $1,865.53 K $6,582.33 K $1,865.53 K $3,916.86 K $1,865.53 

13 K $4,864.60 K $2,915.71 R $47,495.25 K $2,915.71 K $4,864.60 K $2,915.71 

14 K $5,754.55 K $3,916.86 K $1,865.53 K $3,916.86 K $5,754.55 K $3,916.86 

15 K $6,582.32 K $4,864.60 K $2,915.71 K $4,864.60 K $6,582.32 K $4,864.60 

16 K $7,343.55 K $5,754.55 K $3,916.86 K $5,754.55 K $8,567.48 K $5,754.55 

17 K $8,033.85 K $6,582.32 K $4,864.60 K $6,582.33 K $8,033.85 K $6,582.32 

18 K $8,648.84 K $7,343.55 K $5,754.55 K $7,343.55 K $8,648.83 K $8,567.48 

19 K $9,184.14 K $8,033.85 K $6,582.33 K $10,042.31 K $8,309.46 K $8,033.85 

20 R $60,198.47 R $57,327.35 R $53,674.70 R $58,768.83 R $58,057.28 R $57,327.35 
 Total $208,192.39 Total $209,843.42 Total $211,685.59 Total $220,317.24 Total $207,624.37 Total $209,275.40 
 Cost Savings $1,651.03   Cost Savings $8,631.65   Cost Savings $1,651.03   
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difference in savings comes from the difference in the expected costs associated with each approach; 
these results indicate that using the developed SDP-based ERO software can significantly improve 
the replacement procedures and can result in substantial cost savings every year. Specifically, for 
class code 420010, the estimated savings is about $5,464.40/20 = $273.22 per year for a single 
piece of equipment. For class code 520020, the SDP 2-Level solution estimates the cost savings 
with replacement for year six, 13, and 20 as $8,631.65/20 = $431.58 per year, which is much greater 
than either the DDP or SDP 3-Level solutions. The average of the cost savings for both class codes 
is estimated at ($273.22 + $431.58)/2 = $352.40 per year. Considering that there are 194 class codes 
used by TxDOT and on average each class code includes 84 pieces of equipment, a cost savings 
of $352.40*194*84 = $5,742,710.4 might be expected. As can be seen from Table 1, a significant 
cost savings also of $2,506,389.98 for the SDP 3-Level approach can be estimated using the same 
method of calculation. Therefore, one might expect a cost saving of several million dollars annually 
for the agency using the SDP approaches. 

The results provided here were obtained without explicitly considering the annual budget 
constraints of government agencies and private fleet providers. However, the methodology developed 
in this paper can be used to select equipment units for annual replacement based on annual budget 
and other possible constraints specified by the fleet manager. To solve the ERO problem under such 
constraints, the following steps are required.

First, the cost of not replacing an equipment unit when it should be replaced is estimated by 
comparing the total cost of the optimal solution to the minimum total cost incurred when delaying 
the replacement of equipment by a certain number of years. The increases in cost are quantified 
for each feasible replacement year and are used as inputs to the second round of optimization. 
Next, the second round of optimization is used to select the equipment units for annual replacement 
from all equipment units that are eligible for replacement. The main objective of this step is to 
maximize the benefits produced and include a mixture of both TxDOT’s short-term and long-term 
interests. Preliminary results indicate that when an annual budget of $15 million is assumed to be 
allocated and used, a significant amount of cost savings can be estimated by applying the solution 
methodology developed in this paper to optimize TxDOT’s equipment replacement in the current 
fleet existing in the TxDOT Equipment Replacement Model (TERM) data.

Challenges

After conducting comprehensive testing, all three approaches have produced promising results and 
can yield significant cost savings compared with the current TxDOT benchmark decision process. 
Because the probabilistic nature of vehicle utilization is explicitly considered, the formulated SDP 
approach appears to be more practically feasible than the DDP approach. However, the lack of 
large enough and dependable data sets for some class code/equipment units may prevent the SDP 
software from generating as reliable a solution as possible. In this regard, the SDP approach is still 
in somewhat of an early development stage and will be more promising for a future application 
as this line of research matures and the data collection effort progresses. The impact of uncertain 
future purchase cost, down time cost, and operating and maintenance cost on the ERO keep/replace 
decision and its total cost also need further investigation.
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SUMMARY AND FUTURE RESEARCH

In this paper, a comprehensive review of the state-of-the art and state-of-the practice literature for 
the equipment replacement optimization (ERO) problem is first conducted. A dynamic programming 
(DP) based optimization solution methodology is then presented to solve the ERO problem. Bellman’s 
formulation for the ERO deterministic (DDP) and stochastic dynamic programming (SDP) problems 
are discussed in detail. Finally, comprehensive ERO numerical results and implications are given 
along with the opportunities and challenges associated with the equipment replacement optimization 
problem. The software’s computational time and solution quality have been demonstrated to be very 
promising and encouraging, and substantial cost-savings are estimated using this ERO software. 
The computational experience with the ERO problem also indicates that some challenges with data 
collection efforts need to be met in the future. Other issues with forecasting future purchase cost, the 
down time cost, and operating and maintenance cost must also be addressed. As this line of research 
matures and data accumulate, the software can be of immediate use to provide even more reliable 
and better results.

Endnotes

1. This paper draws from the following previous researches of the authors: Fan, et al. (2011; 
2012a, b) to provide a detailed discussion and analysis of equipment replacement optimization.
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