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Hazardous	materials	(hazmat)	transportation	is	of	concern	to	policymakers	because	of	the	serious	
safety,	health,	and	environmental	risks	associated	with	the	release	of	hazmat.	One	effective	approach	
to	minimize	risks	associated	with	hazmat	transport	is	the	prohibition	of	hazmat	transportation	on	
higher	risk	links	that	either	pose	safety	hazards	or	increased	exposure	by	traversing	densely	populated	
areas.	 Because	 of	 high	 risk,	 there	 are	multiple	 stakeholders	 involved	 in	 hazmat	 transportation.	
While	shippers	and	carriers	are	directly	involved	in	making	routing	decisions,	regulatory	agencies	
influence	this	decision	by	imposing	routing	restrictions.	In	this	paper,	we	apply	a	bi-objective	shortest	
path	problem	to	evaluate	routing	and	regulation	plans	for	hazmat	transportation.	We	characterize	
the	cost	objective	as	the	shortest	path	between	an	origin	and	a	destination.	The	risk	objective	is	
to	minimize	the	risk	of	exposure	by	restricting	the	link	with	the	highest	risk	on	the	best	available	
path	 from	an	origin	 to	a	destination.	We	 formulate	 the	bi-objective	model	and	apply	 it	 to	a	 test	
network.	Solutions	consider	multiple	origin-destination	pairs	and	present	a	non-dominated	frontier	
to	establish	routing	and	regulatory	strategies	for	hazmat	transportation.	

INTRODUCTION

Transportation of hazardous materials (hazmat) poses risks because of the danger associated with 
the accidental release of hazardous materials. An incident involving a vehicle carrying hazardous 
materials can produce undesirable short- and lon-term consequences to human health and the 
environment, including severe illness, death, and irreversible pollution, and in the worst case may 
require evacuation. A recent United States Department of Transportation commodity survey reports 
that hazmat transportation on highways has increased by approximately 4% from 2002 to 2007 
(U.S. Department of Transportation July 2010). Due to this increase in hazmat transportation and 
the negative consequences associated with these incidents, various risk mitigation strategies have 
been proposed to lower the probability and consequence of hazmat release into the environment. 
Effective methods in hazmat transport risk minimization identify minimum risk paths and eliminate 
hazmat transport on links where the risk of population or environmental exposure is unacceptably 
high.

Hazardous materials transportation is different from the conventional vehicle routing because 
of the risk associated with hazmat transportation. Hazmat routing is usually controlled by multiple 
criteria, making the routing suitable for multi-objective optimization (Chang et al. 2005). These 
criteria may be pursued by a single or a group of stakeholders. For example, shippers and carriers 
may want to find a route that minimizes transportation costs but at the same time minimizes risk to 
reduce liability. Regulatory agencies may restrict links where risk is excessively high, which may 
affect shippers’ and carriers’ route choice. Regulators may also want to make sure that the restriction 
is not imposing an overly burdensome transportation cost.  Hence, there are two aspects in both 
routing and link restriction decisions: risk and cost. Bi-objective optimization can be effective for 
problems with two dissimilar objectives and in cases when the competing objectives have different 
units (e.g., risk and cost).

A Bi-Objective Approach to Evaluate Highway 
Routing and Regulatory Strategies for Hazardous 
Materials Transportation
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This paper proposes a bi-objective optimization model satisfying both risk and cost aspects of 
hazmat routing. In this model, one objective is to enhance network security by identifying critical 
links that shippers and carriers are likely to choose, in which risk exposure is unacceptably high. 
Risk is defined as the product of hazmat vehicle incident probability and the consequence of an 
incident. Consequence is defined as a link’s neighboring population exposure. Routing risk is usually 
minimized by identifying minimum risk paths; however, because of the serious consequences 
associated with hazmat release, an incident on a single link can produce severe impacts even though 
that link is on the minimum risk path. Thus, avoiding the link with the highest risk may constitute a 
better risk aversion strategy than approaches that minimize aggregate path risk. The second objective 
is to determine a least cost path for hazmat transport. The combination of these two objectives 
requires a tradeoff between maximum link risk and minimum transportation cost. We employ a test 
network with synthetic data to illustrate the model. Multiple origin-destination pairs are considered. 
The effect of link restriction or avoidance of a particular link on the path choice is examined. The 
model output can be used to support decisions involving roadway and route restrictions in hazmat 
transport. 

LITERATURE REVIEW

A widely accepted definition of hazmat transportation risk is the product of the probability of an 
incident and the consequence of this incident (Erkut and Ingolfsson 2000). Consequences of an 
incident can range from fatalities to infrastructure and environmental damage. Due to the complexity 
of enumerating all possible forms of loss and the fact that consequences are proportional to the 
population in the neighborhood of the incident, population exposure is often taken as the surrogate 
measure of risk. In the Federal Highway Administration guidelines for hazardous materials (Shaver 
and Kaiser 1998), population exposure has been viewed as the most important criterion in routing. 
Numerous hazmate routing problems have studied risk aversion using this definition. We also 
consider this definition in this paper.

List et al. (1991) provided a broad overview of hazmat transportation models, including risk 
analysis, routing and scheduling, and facility location prior to 1991 and observed a shift from single- 
to multi-objective optimization. Erkut and Verter (1998) discussed several risk models, all of which 
involve minimization of aggregate link risk at their core. They showed that optimal paths under 
one model could perform poorly under another model. Erkut and Ingolfsson (2000) introduced 
three somewhat different risk aversion objectives in a hazmat transportation model: minimizing the 
maximum population exposure, minimizing the variance of losses along a route, and minimizing 
the expected disutility of the losses. All three of these models can be characterized as shortest path 
problems. The authors concluded that the first of these three models may be the most intuitive and 
tractable.

Bi-level models have also gained popularity because they accommodate the two decision 
makers (government regulators and hazmat shippers/carriers) most directly involved in route 
planning. For example, Kara and Verter (2004) and Erkut and Gzara (2008) formulated bi-level 
models where the government selects a subset of available roads to minimize total risk and then 
allows carriers to choose routes that offer the shortest distance within the reduced network. The 
bi-level program of Bianco, Caramia, and Giordani (2009) considers multiple layers of government 
authority, responsible at different geographical levels, including regional and local authorities. In 
this approach, regional authorities seek to minimize the total risk in the area under their jurisdiction, 
while local authorities prefer to minimize the risk to the local population.

There exists a substantial literature related to transportation security and terrorism, and many 
of these studies apply game theory. A comprehensive review of game theoretic techniques in 
transportation can be found in Hollander and Prashker (2006). Network vulnerability assessment 
has also received significant attention. Bell (2006; 2007) formulated a two-person, non-cooperative, 
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zero-sum game in which the hazmat router seeks a shortest path assignment and the tester seeks to 
maximize network disruption. In this game, a shipper wishes to minimize the average population 
affected; while the demon desires to maximize the average population affected by creating an 
incident on one edge. This study demonstrated that a shipment possessing multiple routes between 
a single origin-destination pair reduces the risk of exposure more than shipments with only one 
available route. Nune and Murray-Tuite (2007) identify the possible routes taken by a demon 
hijacking a hazmat truck to maximize the consequences. They found that travel time rather than 
travel distance is a more appropriate criterion to identify the paths in urban areas during peak hours. 
Dadkar, Nozick, and Jones (2010) used a non-zero sum game structure between a shipper and a 
terrorist and maximize carrier utilities to optimize link use restrictions. The terrorist’s link attack 
preference is influenced by the routes chosen by the carrier and the regulations implemented by 
the government. Given the carriers’ choice of path and the terrorist attack strategy, the government 
then decides which links to prohibit. An extension of this study by Reilly et al. (2012) included a 
Stackelberg game in which the government acts as a leader to maximize the carrier’s payoff and 
limit the terrorist’s payoff. Rahman et al. (2012) showed that reducing the size of hazmat network 
may increase the attacker’s expected payoff.

Similar to the bi-level modeling approach, the multi-objective path finding approach has gained 
attention as a method to model scenarios where there are several stakeholders. List and Mirchandani 
(1991) presented a multi-objective model for routing and facility location of hazardous materials 
considering travel time as a link attribute and risk as a zonal attribute. Nozick, List, and Turnquist 
(1997) introduced time varying patterns of accident rates and exposure into multi-objective routing 
and scheduling of hazmat transportation based on three minimization criteria: the accident rate, 
link population exposure, and route length. The authors examined the tradeoff between two criteria 
considering time varying and static patterns of accident and exposure. A time varying pattern was 
also explored by Miller-Hooks and Mahmassani (1998) and Chang, Nozick, and Turnquist (2005). 

In this paper, we use a bi-objective model addressing both the cost and risk aspects of hazmat 
routing. A shortest path from origin to destination captures the minimum transportation cost 
objective. This objective is consistent with the Department of Transportation’s routing guideline 
(U.S. Department of Transportation 1994) that endeavors to avoid imposing an excessive burden on 
commerce. The risk objective is to restrict or avoid links exhibiting high risk to exposure. That is, 
we seek to minimize the maximum risk within a path. This is different from the prevailing literature 
where routing is usually obtained by minimizing the total path cost. This paper proposes a method 
that can be used by regulators to obtain link regulation strategies and also by shippers and carriers to 
determine what routes should be avoided to reduce risk, yet strike a balance between cost and risk.

FORMULATION

Consider a directed transportation network, G = (N, A), where N is a set of nodes and A is a set of m 
links. Each link is indexed by (i, j)  A : i, j  N. Hazardous materials are transported through  from 
origins,  to their destinations. The following notations and data are used in the model:

Data

Pij = Population on a link (i, j) within a threshold distance
ρij	 = Incident probability on a link (i, j)
cij = Hazmat transportation cost on a link (i, j)

Ωij = ρij	Pij		= Hazmat risk of link (i, j)

zij =
0, link (i, j) is restricted to hazmat transport
1, link (i, j) is open
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The at-risk population Pij is the population living within a specified threshold distance from 
the link. The impact radius varies for different types of hazmat ranging from 0.5 to 5.0 miles (US 
Department of Transportation 1994). Therefore, Pij is defined as the population within 0.5 to 5.0 miles 
of a link (i, j) in all directions depending on the type of hazmat. It is assumed that on-link population 
is negligible. The restricted links where risk is excessively high are represented by zij. Some links 
may be closed a	 priori	 to prevent exposure to particularly sensitive populations (e.g., schools, 
government offices, hospitals). These links may require a well-coordinated evacuation plan in the 
event of an accident. Therefore, the regulator may decide to close them in advance to minimize 
the possibility of such scenarios. Also, even though the impact area is not circular, the analyst can 
consider the population within the impact area obtained from any diffusion pattern and use this 
model.

Decision Variable

xij =
0, link (i, j) is not used for hazmat transport
1, link (i, j) is used

The decision variable	xij identifies the links included in the hazmat routes.

Bi-Objective Shortest Path Model

(1) P1 min  max  Ωij		xij
              (i,	j)A

(2) P2 min   ∑   cij		xij
            (i,	j)A

Subject to

(3)    ∑   	xij		–			 ∑   	xij		=	
j: (i,	j)A												j: (i,	j)A

      1,		i	is	origin
    –1,		i	is	destination
    0,	otherwise

(4) xij ≤ zij
(5) xij	, zij	 {0,1}

Here, the two dissimilar objectives, referred to as P1 and P2, are given by equation (1) and 
equation (2). The first objective is a minimum maximum (minmax) formulation, whereas the second 
one is a minimum sum (minsum) formulation. The bi-objective formulation creates a minmax-
minsum shortest path problem (Berman, Einav, and Handler 1990; de Lima Pinto, Bornstein, and 
Maculan 2009). Equation (3) is the flow balance constraint employed to find the shortest path between 
an origin and a destination. Equation (4) ensures that only links available to hazmat transport are 
selected by the carriers. Equation (5) is the binary requirements of the decision variable  and initial 
link closure.

To illustrate the suitability of the model, consider a carrier wishing to transport a hazmat 
shipment from the origin to the destination in the network shown in Figure 1. The network consists 
of four links:  a, b, c, and d, with two paths (a, c) and (b, d).  All links possess equal travel time. The 
risk of an incident on each link is shown in parentheses and the incident probability is independent 
of the carrier’s path choice. Although path risk is lower on path (b, d), the minmax-minsum model 
prefers path (a, c) because it avoids the maximum risk link d on the two paths available. Hazmat 
transportation is defined as a “low probability high consequence” event, where even a single incident 
in one million shipments can produce severe consequences. Thus, avoiding the link with the highest 
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risk may constitute a better risk aversion strategy than approaches that sum the risk of each link in 
a path.

Figure 1: Example Illustrating the Minmax-Minsum Model

SOLUTION PROCEDURE

In this paper, the algorithm proposed by Berman et al. (1990)  is adapted to solve the program given 
by Eqs. (1) to (5). They considered network problems that are characterized by two performance 
measures. One performance measure is a cost function and the other is a maximum cost. In this 
algorithm, one or more links with cost above a certain value in the first problem are deleted from 
the network to obtain a reduced network. The second problem is solved on the reduced network. 
The algorithm continues until the origin and destination become disconnected from each other. The 
algorithm produces all solutions that satisfy both objectives and identifies all non-dominated (Pareto 
optimal) solutions. A solution is called a non-dominated solution when there is no alternative solution 
that is better than that solution with respect to any of the objectives.  More detailed explanation of 
non-dominated solutions can be found in de Lima Pinto et al. (2009), Huang et al. (2005), and Erkut 
and Gzara (2008). The algorithm from Berman et al. (1990) is described below: 

Step	0.	 Initialize the network by setting initial restrictions, zij if any. Set F = Ø.  Here F is a set of 
all Pareto solutions (α0, β0).  α0  and β0 correspond to the Pareto or non-dominated solutions 
of P1 and P2 respectively. Set β0 =  .

Step	1.  Rank all available links in the network in non-decreasing order of the link risk, Ωij. To do 
this, define a link with rank r, lr, r = 1, ..., m, so that Ωij	(l1) ≤ Ωij	(l2) ≤ ... ≤ Ωij	(lm). Here 
lr represents ranked link and m is the number of links in the network. Set r = m.

Step	2. Set αr	 = Ωij	(lr).  If there are other links lk, k < r, with the same risk as Ωij	(lr) update r to be 
equal to the smallest such k. Delete from the network all links where Ωij	 ≥ αr	.  Solve P2  
on the reduced network.  Let the solution be βr	. If  βr		> β0  then F = F	{(α0, β0)}. If no 
solution exists, stop.  

Step	3. Set, β0 = βr	, α0 = αr and r = r –1, if r = 0, then set  F = F	{(α0, β0)} and stop, otherwise go 
to step 2.

The algorithm produces all feasible solutions (αr	 , βr) and identifies all the non-dominated 
solutions (α0, β0).

APPLICATION

We apply the MinMax-MinSum shortest path model to the Sioux Falls network (available at http://
www.bgu.ac.il/~bargera/tntp/), a widely used case study employed in recent research, including 
Ukkusuri and Yushimito (2009) and Lownes et al. (2011) for network vulnerability analysis. 
Figure 2 shows the network, which consists of 24 nodes and 76 links. The analysis considers two 
origin nodes (nodes 2 and 3) and two destination nodes (nodes 18 and 22), resulting in four origin-
destination pairs. The randomly generated synthetic link data used in this analysis are reported in 
Table 1. While generating the data, relatively higher populations were placed in the middle of the 
network, imitating a dense core with a lower density fringe.
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Figure 2: Sioux Falls Network (Dashed Squares = Origins, Dashed Diamonds = Destinations)
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Table 1: Sioux Falls Network Data
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Fortunately, hazmat transportation possesses a very low accident probability. Kokkinos et al. 
(2012) reported that the hazmat accident rate is about 10-6 ~ 10-8 per km traveled (6.21  10-7 ~ 6.21 
 10-9 per mile).  A small incident probability between 1  10-8 to  9  10-8 per mile was generated 
for all links assuming a uniform distribution within that range. The unit of risk, the product of 
population and accident rate, is person exposure per mile traveled.

The shortest paths for each origin-destination pair are calculated at the beginning of the 
algorithm without imposing any link restrictions on the network (zij	=	0). These paths represent the 
second objective, without considering the first objective. The path cost in these paths are the lower 
bound of the cost in this bi-objective problem. These paths are the desirable hazmat routes when no 
restrictions are imposed to any link for safety purpose. The paths are reported as A1, B1, C1, and D1 
for O-D pairs (2, 18), (2, 22), (3, 18), and (3, 22), respectively, in Table 2.  Link 39 (node 13–node 
24) possesses the greatest risk and is restricted at the first iteration. The risk value of link 39 is the 
upper bound of the risk in the bi-objective problem. The restriction on link 39 does not impact the 
travel decision for O-D pairs (2, 18) and (3, 18) because A1 and C1 do not utilize link 39. However, 
the desirable paths for O-D pairs (2, 22) and (3, 22) change because of this restriction. The new paths 
are shown as B2 and D2 with path costs 222 minutes and 240 minutes in Table 2. After closing 32 
links, O-D pairs (3, 18) and (3, 22) become inaccessible, while O-D pairs (2, 18) and (2, 22) become 
inaccessible after closing 35 links, as shown in Table 2. We stop the algorithm after this since there 
are no routes available for any O-D pair. Figure 3 illustrates the reduction in link risk until no paths 
are available. The corresponding path costs due to closure of links are shown in Figure 4.

Figure 5 shows link risk vs. path cost for each O-D pair for all iterations. The figure shows 
the influence of the link closure on the desirable routing (shortest path) strategy. Each point in the 
plot represents a link risk that has been restricted and the shortest path due to this restriction. These 
points correspond to the solution (αr	, βr) described in the algorithm. Paths on the same vertical line 
on the plots are not non-dominant, because the route selection strategy did not change even though 
the riskier links are being closed. For example, with O-D pair (2, 18), restricting the first eight links 
on the network does not change the shortest path. The path costs are therefore not dependent on 
the link restriction; furthermore, the risk and path cost combination during these iterations are not 
non-dominant.

The non-dominant solutions (α0, β0) can be identified from Figure 5 in addition to the algorithm. 
To identify a non-dominant (Pareto optimal) frontier, it is necessary to identify the risk level where 
the route selection strategy changes. If a new path is found for a particular link closure, the associated 
link risk and the cost of the previous path constitute a point of the Pareto frontier. There are only 
three paths (A1, B1, and C1) that are generated for O-D pair (2, 18). Newer (A1 to A2, A2 to A3) 
or inaccessible paths (infinite cost) are generated when closing links with risk 9.84, 8.01, and 6.37, 
respectively. The non-dominant points for O-D pair (2, 18) are the risk and cost combination of (link 
20, path A1), (link 25, path A2), and (link 30, path A3). Figure 6 shows the Pareto solutions for the 
four O-D pairs. The paths represented by each point are shown in Table 2.

The non-dominant solutions have important implications for decision making, both from 
regulators’ and shipper/carriers’ perspectives. Figure 6 summarizes the travel cost imposed on 
shipper/carriers when a particular hazmat link prohibition strategy is implemented.  Furthermore, 
for a particular risk value, the paths below that risk value are those available for hazmat transport. 
For example, if the regulator’s target is to restrict all links with risk greater than or equal to 10, all 
paths are available to shipper/carriers for O-D pair (2, 18) because the risk on all relevant paths 
lies below this threshold. The shipper/carriers will most likely choose path A1 because it gives the 
lowest cost among all paths. If they are more concerned about risk, they may choose either A2 or 
A3 if cost is not a major issue. For all other O-D pairs, they lose their first choices B1, C1, and D1 
and may choose second lowest cost paths B2, C2, and D2. Observing the non-dominated front for 
O-D pair (2, 22) explains that some cases may occur when risk may be reduced even without visibly 
increasing cost. If the first routing strategy (route B1) is eliminated and the second option (route 
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Table 2: Path Selections at Each Link Closure

Figure 3: Link Risk at Each Link Closure
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Figure 4: Cost vs. Link Closure for Each O-D Pair

B2) is taken, we can reduce risk 40% (16.56 to 9.84) with only about a 3% (216 min to 222 min) 
increase in travel cost. It is seen that a substantial increase is observed for O-D pair (3, 18) and (3, 
22) if first routing options are eliminated. The costs for O-D pair (3, 18), and (3, 22) increase to 
48.39% (186 min, path C1 to 276 min, route C2), and 73.91% (138 min, path D1 to 240 min, route 
D2), respectively. The risk reduction for O-D pair (3, 18) is only 2.5%, however, for O-D pair (3, 
22), it is about 42%.

In addition to a Pareto optimal front for each of the O-D pairs, a system level Pareto frontier 
can serve regulators in evaluating the trade-off between link closure and system level cost. The 
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Figure 5: Link Risk vs. Path Cost

system-level Pareto points are constructed by summing the path costs of all shortest paths at a given 
restricted network and the associated maximum link risk as shown in Figure 7. It is seen that if the 
allowable maximum risk is set to 10, the system cost increases from 684 min, when there is no 
restriction, to 882 min.  Also, the allowable maximum risk cannot be lowered below 7.2 because no 
paths will be available for any shipments.

The bi-objective model discussed in this paper can offer insights to identify a risk threshold 
value for regulators and to determine how route choice may be affected by such restrictions. For 
shippers and carriers, this will provide a strategy to verify the suitability of routing, how to decrease 
transportation costs, and if risk is being shifted from one subpopulation to another. Although the 
analysis was demonstrated with a hypothetical network, the model can be used for any network with 
real data.



Hazardous Materials Transportation

18

Figure 6: Pareto Optimal Frontiers for Each O-D Pair

CONCLUDING REMARKS

A bi-objective shortest path problem was formulated for hazardous materials routing. Although the 
method was applied to a test network, the methods can be applied to any network as a decision-
support tool for hazmat link prohibition policies. The method described in this paper constructs 
non-dominated frontiers for each origin-destination pair and the complete hazmat transportation 
network, which can aid a regulatory agency to establish and evaluate a tolerable threshold risk; 
the links exceeding the risk tolerance may then be restricted, and routing plans minimizing the 
impact on the carriers can be identified. Shippers and carriers can also establish their routing 
strategies by eliminating paths that utilize high risk links to determine an appropriate cost estimate 
of transportation. The method described in this paper can therefore be used to compare alternative 
regulation and routing strategies to achieve a desired balance between risk and routing convenience. 
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Figure 7: System Level Pareto Optimal Frontier

In future research, these metrics will be illustrated on medium- and large-scale real transportation 
networks considering multi-commodity hazmat flow.

The model is static, not dynamic, so it doesn’t include travel time variability by day of the week 
or by season of the year. The model also doesn’t identify the effect that weather has on dispersal 
areas of hazardous materials. These matters are outside the scope of the paper, which is focused on 
hazmat routing. Thus, the paper doesn’t consider accident risk during loading and unloading.
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