
21

JTRF Volume 53 No. 3, Fall 2014

Measuring Performance at a Large Metropolitan 
Area: The Case of the DC (District of Columbia) 
Metroplex
by Tony Diana

Hierarchical linear models improve the measurement of performance when applied to a construct 
such as a metroplex. It compares the outcomes of a hierarchical linear model with those of a multiple 
regression model to evaluate whether meteorological conditions at individual airports and overall 
would explain variations in block delays. The study used the cases of the three largest airports in 
the DC Metroplex and concluded airborne delays had a significant random effect on block delays in 
spite of meteorological conditions at each airport. It pointed out that surface operations efficiency 
played a significant role in explaining variations in block delays. 

INTRODUCTION

The National Airspace System (NAS) consists of a network of airports that serve the needs of a 
variety of users (i.e. air carrier, air taxi, general aviation, military, and freight operators). These 
airports are sometimes clustered within large metropolitan areas, also called “metroplexes,” where 
a mix of users and aircraft sizes raises some challenges for air traffic control (ATC) as they share 
the same airspace. 

A metroplex can be defined as a metropolitan area where access among larger hub and smaller 
general aviation airports in close proximity may be affected by interdependent and sometimes 
conflicting arrival and departure routes. The appendix provides an illustration of the arrival and 
departure streams at the DC Metroplex. The metroplex concept holds a central place in the Next 
Generation Air Transportation System, or “NextGen,” that aims to transform the legacy radar-based 
air traffic control into the future satellite-based air-traffic-managed system. In 2009, the RTCA 
(Radio Technical Commission for Aeronautics)1 Task Force 5 identified 21 areas “to optimize area 
navigation (RNAV) and required navigation procedures (RNP) operations, and institute tiger teams 
that focus on quality at each location as well as integrate procedure design to de-conflict airports and 
expand use of terminal separation rules.”2 Such is the case in this study of the District of Columbia 
Metroplex, or DC Metroplex, that includes (1) large hub airports such as Baltimore/Washington 
International Thurgood Marshall (BWI), Washington Reagan National (DCA), and Washington 
Dulles International (IAD) airports; (2) secondary airports such as Richmond International (RIC); 
and (3) general aviation airports such as Frederick Municipal (FDK), Martin State (MTN), and 
Manassas Regional (HEF) airports, among others.

The Federal Aviation Administration (FAA) initiated the airspace redesign project of the DC 
Metroplex in September 2010. After proceeding through the phases of study, design, environment, 
and safety management system, the implementation of airspace redesign started in July 2013. In 
the meantime, new arrival and departure procedures were implemented to support area navigation 
(RNAV) and optimized profile descent (OPD), as well as to minimize conflicting flight paths. 
Optimized profile descents allow aircraft to stay longer in level flight and to descend progressively 
from the top of descent to the runway threshold. OPDs serve two major purposes: (1) Reduce 
stepwise descent that increases fuel consumption and (2) minimize the need for frequent read-back 
communication between pilots and air traffic controllers.
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The present analysis focuses on the cases of the three largest airports in the DC Metroplex 
(BWI, DCA, and IAD) at three different time periods: before the implementation of NextGen 
capabilities and new flight procedures (summer 2007) and afterward (summer 2012 and 2013). The 
summer months of June to August were selected because they are characterized by peak traffic and 
extreme weather such as thunderstorms. This study assumes that variations in block delays are likely 
to be impacted by en-route miles flown, aircraft speed, the counts of NAS-related delays, taxi-in and 
-out delays, as well as the percentage of operations in instrument meteorological conditions. The 
study also hypothesize that meteorological conditions at each airport and overall for the metroplex 
are likely to affect block delays when considering the random effects of airborne delays. This study 
attempts to answer the following research questions:
•	 How much of the variation in block delays (the difference between actual and filed block times) 

can be attributed to meteorological conditions during the hours of 07:00 to 21:59 for each 
sampled time period?

•	 Is the influence of any independent variables on block delays more likely to vary under specific 
meteorological conditions (instrument vs. visual) overall and at each individual airport for each 
sampled summer?

•	 Is there any significant change in block delays at the Metroplex and individual airport levels as 
new procedures and NextGen capabilities have been implemented?

•	 Is there any difference between the outcomes of a hierarchical linear model based on a mixed 
model and those of a multiple regression model?
To answer these questions, a two-level hierarchical linear model utilizing fixed and random 

effects was selected. A hierarchical linear model implies that meteorological conditions are nested 
within each sampled airport. Hierarchical linear or multilevel analysis3 models have been widely 
used in spatial analysis, sociology, and psychology, but not extensively in aviation. This study serves 
several purposes: (1) it illustrates how hierarchical analysis provides some better insight into the 
factors that explain block delays; (2) it takes into account multiple levels of measurement that would 
otherwise be “hidden” in an ordinary least-squares model; and (3) it includes fixed-effects and 
random-effects variables.

Beaubien et al. (2001) provided a review of hierarchical linear modeling techniques applied to 
commercial aviation research with pilot, crew, and airlines as the three levels of analysis. Haines 
et al. (2002) determined that chronic exposure to aircraft noise was likely to be associated with 
poor school performance in reading and mathematics performance. Castelli et al. (2003) resorted 
to multilevel analysis to evaluate the patterns of variation of price elasticity of demand among the 
various routes of an airline and concluded that the airfare elasticity of passenger demand significantly 
varied among the different routes of the airline. Gudmunsson (2004) evaluated the factors associated 
with airline performance using a two-level bottom–up hierarchical approach. Miranda et al. (2011) 
used multilevel analysis to investigate the blood lead levels among children living in six North 
Carolina counties resulting from the exposure to aviation gasoline exhaust. Chung and Wong 
(2011) investigated the impact of China-Taiwan non-stop routes on cross-strait air travel city pairs. 
Fidell et al. (2011) utilized multilevel models to assess the impact of annoyance with aircraft noise 
exposure across communities. Rozenblat et al. (2013) made use of multilevel clustering methods to 
delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide 
air passenger traffic. 

The next section will deal with the methodology and assumptions underlying the analytical 
models before discussing the model outcomes and providing some final remarks and implications 
for future research.
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METHODOLOGY

The Models’ Variables and Data Processing

The sample includes 828 observations equally divided into three summers (92 days each) and 
three airports. All variables originate from the Aviation System Performance Metrics (ASPM) 
data warehouse. ASPM reports operational and delay metrics from a variety of sources: OPSNET 
(Operational Network), Traffic Flow Management System (TFMS), and the Bureau of Transportation 
Statistics (BTS). Within each day, the selected variables were measured from the hours of 07:00 to 
21:59 when traffic is most active. Each hour was flagged for instrument versus visual meteorological 
conditions. Since weather is the major driver of delays, this study assumed that it was not possible 
to measure variations in block delays as explained by the model without isolating the impact of 
meteorological conditions as a whole and for each selected airport in the metroplex. 

The number of variables was determined by comparing Akaike’s Information Criterion (AIC), 
Akaike’s Information Criterion corrected for finite sample sizes (AICC) and Schwartz’s Bayesian 
Information Criterion (BIC) of the various models. The lower the number of estimated parameters, 
the lower the value of the AIC and BIC and, as a result, the better the fit of the model. Other 
considered variables were the number of operations, gate arrival and departure delays, and excess 
miles flown. The final models included the following variables:
•	 Block delays represent the dependent variable. They are computed as the difference between 

actual and block times filed in the flight plan, in minutes. The flight plan used to compute block 
delays is the last one before takeoff. Block time measures the duration from gate-out (origin) 
and gate-in (destination) times. Block delays include all the flights that arrive at BWI, DCA, 
and IAD during the hours of 07:00 to 21:59 (local time). The comparison of actual with flight-
planned times removes from the analysis any biases due to airlines’ schedule padding if actual 
block times had been compared with scheduled block times. However, it is important to point 
out that the number of scheduled operations for the combined airports declined from 214,306 
in summer 2007 to 207,127 in summer 2012 and 204,894 in summer 2013 (sources: Innovata 
flight schedules).

•	 En-route miles flown represent the distance about 100 nautical miles from the origin airport to 
100 nautical miles from the destination airport. 

•	 Speed is the average number of nautical miles flown per hour for aircraft flying into BWI, DCA, 
and IAD. 

•	 The counts of National Airspace System or NAS-related delays account for “the delays and 
cancellations attributable to the national aviation system that refer to a broad set of conditions, 
such as non-extreme weather conditions, airport operations, heavy traffic volume, and air traffic 
control.”4 These delays often impact changes in the flight plan.

•	 Taxi-out delays are the differences between actual and unimpeded gate-out to wheels-off times, 
in minutes. Unimpeded taxi-out times are based on taxi-out times reported by the major carriers 
to BTS, and they estimate the time it takes for an aircraft to move from the gate departure 
to takeoff when there is only one aircraft ahead in the takeoff queue. The gate-out, wheels-
off, wheels-in, and gate-in messages used to compute the actual times of the flight phases are 
compiled by ARINC (Aeronautical Radio, Incorporated), a division of Rockwell Collins (http://
www.airinc.com) and recorded in the ASPM data warehouse. 

•	 Taxi-in delays are the differences between actual and unimpeded wheels-on to gate-in times, in 
minutes. The computation of taxi-in delays are based on the same principles as taxi-out delays. 

•	 Airborne delays measure the difference between actual airborne times and the flight plan’s 
estimated time en route, in minutes. Airborne delays are sometimes used by ATC to provide 
safe separation, regulate speed, merge traffic, and avoid potential conflicts among flight paths. 
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Airborne delays characterize the random effect variable in the model, which implies setting up 
a common correlation among all observations having the same level of airborne delays. 

•	 The percentage of operations in instrument meteorological conditions is derived from the 
minimum ceiling and visibility in effect at each facility summarized in Table 1. If the percentage 
of operations in instrument meteorological conditions during a specific hour is greater than 
10%, then the dummy variable “IMC” for that flight record is coded as “1” and “0” otherwise. 

Table 1: Selected Airports’ Minimum Ceiling and Visibility
Airpot Ceiling (ft) Visibility (nm)
BWI 2,500 5
DCA 3,000 4
IAD 3,000 7

Source: FAA, ASPM

The hierarchical linear model estimates were derived with the MIXED procedure, while the 
multiple regression models used the REG procedure, both programmed in SAS®. Meteorological 
condition and airport are the classification variables that represent the two levels in this analysis. 
The hierarchical linear model estimates were generated with maximum likelihood. Fifteen iterations 
were required for convergence. 

This study utilizes a mixed model that includes fixed-effects parameters (known explanatory 
variables) and covariance parameters that are useful when data are grouped into clusters (i.e., 
individual airport and meteorological conditions at selected airports) in which data are likely to be 
correlated. The clustering (nesting) of meteorological conditions into the airport variable creates 
additional potential variability and correlation. Although data are assumed to have a normal 
distribution, the mixed model allows correlation and heterogeneous variances.

The Hierarchical Model Assumptions and Specifications

An ordinary least-squares (OLS) regression model does not provide any indication of how the 
selected factors account for variations in block delays when data are sliced at different levels (i.e. by 
meteorological condition and by meteorological condition at each sampled airport). A hierarchical 
linear model enables analysts to account for the variations of block delays and to understand the 
contribution of meteorological conditions at each sampled airport to explain the variation in block 
delays. Readers interested in hierarchical linear or multilevel analytical models are referred to Bryk 
and Raudenbush (2001) and Hox (2010) for a clear exposition. 

Hox (2010: 4) summarized the purpose of multilevel analysis in these terms: “The goal of the 
analysis is to determine the direct effect of individual- and group-level explanatory variables, and 
to determine if the explanatory variables at the group level serve as moderators of individual-level 
relationships.” Hierarchical linear models provide the following benefits:
•	 They improve the estimation of effects within individual airports.
•	 They allow analysts to test the hypotheses of cross-level effects and the partitioning of variance 

and variance components among the two levels.
•	 One of the key assumptions of OLS is independence of observations. However, nesting 

meteorological conditions into airports creates dependencies in the data and may generate 
inaccurate estimates in non-hierarchical linear models. The dependence of observations may 
entail biased parameter estimates and standard errors in OLS models.

•	 It is important for analysts to understand variations at different hierarchical levels. Hierarchical 
linear analysis takes into account the correlated nesting of data, whether block delays vary 
based on meteorological conditions at a specific airport during a specific time period.
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The hierarchical linear model that features a random intercept and slopes for each time period 
features two levels:

Level 1 for Each Selected Time Period:

(1)	 Yij = β0j + β1j X1j +…+ βij Xij +  εij

Where εij ~ N(0, σ2), Yij represents block delays and Xij, the factors in specific meteorological 
conditions nested at j airport that explain variations in block delays. 

Level 2 for Each Selected Time Period:

(2)	     β0j = ϒ00 + U0j

(3)	     β1j = ϒ10 + U1j

Where   independent over j and with εij

            

τ0
2 represents the variance of the level two residuals U0j from predicting the level 1 intercept 

(β0j). τ1
2 is the variance of the level 2 residuals U1j from predicting the level 1 slope (β1j). τ10 is the 

covariance between U0j and U1j. The cov(U0j,U1j) = cov(β0j, β1j) =  τ10. 

Based on the equations (1) to (3), the hierarchical linear model can be expressed as:

(4)	 Yij = ϒ00 + ϒ10 Xij + U0j + U1j + εij

Where ϒ00 + ϒ10Xij represents the fixed component and U0j + U1J + εij, the random one. The variance 
of the random-effects parameters are known as variance components.  

The specification of fixed and random components within the hierarchical linear model 
represents the major difference with the multiple regression models for each airport. The empirical 
model is equation (5):

(5)	 Block Delaysij = β0j + β1jEnroute Miles Flownij + β2jSpeedij+ β3j NAS Delaysij 
+ β4jTaxi-Out Delaysij+ β5jTaxi-In Delaysij + β6jIMCij + εij for j airport.

FINDINGS AND INTERPRETATION 

Goodness of Fit

The first step in the analysis consists in evaluating the goodness of fit of the hierarchical and multiple 
regression models.

In Table 2, the improvement in the -2 Log likelihood value over the iterations for each sample 
suggests there is “a significant improvement over the null model consisting of no random effects and 
a homogeneous residual error.”5
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Table 2: Fit Statistics for the Hierarchical Models
Fit Statistics

Criteria Summer ’07 Summer ’12 Summer ’13
-2 Log Likelihood 828.0 673.9 701.3
AIC (Smaller is Better) 850.0 693.9 721.3
AICC (Smaller is Better) 851.0 694.7 722.2
BIC (Smaller is Better) 835.6 680.8 708.3

Table 3: Fit Statistics for the Multiple Regression Models
Fit Statistics

Criteria Summer ’07 Summer ’12 Summer ’13
R2 0.8660 0.7665 0.8408
Adjusted R2 0.8630 0.7613 0.8373
F Value 289.63 147.16 236.83
Pr > F <.0001 <.0001 <.0001

At a 95% confidence level, the hypothesis that any estimate in the three models equals zero can 
be rejected since p < .0001. The coefficients of determination indicate that the selected independent 
variables account for a large portion of the variation in block delays, albeit to a greater extent in 
summer 2007 and 2013 than in summer 2012. However, the multiple regression models do not 
specify (1) to what extent overall meteorological conditions and those at each selected airport may 
have accounted for any variation in block delays and (2) whether airborne delays linked to traffic 
management initiatives may have randomly affected block delays.

The Estimates of Fixed and Random Effects in the Hierarchical Linear Models

In Table 4, the fixed-effects estimates represent the estimated means for the random intercept and 
slope, respectively. 

Most of the fixed effects are significant at a 95% confidence level except enroute miles flown 
in summer 2012 (p > 0.05). Taking the example of summer 2007, block delays decreased 0.0029 
minutes on average for one nautical mile change in the enroute miles flown, while holding other 
predictors in the model constant. In summer 2012 and 2013, the sign of the estimates for enroute 
miles flown did not significantly change and block delays increased 0.0015 and 0.0037 minutes, 
respectively, for one nautical mile flown, holding other variables constant.

Although speed was significant in the three samples, its magnitude decreased after the 
implementation of new procedures (optimized profile descent, area navigation approaches and 
departures) and airspace redesign.6 In summer 2007, block delays decreased 0.04 minutes for one 
nautical mile change in speed, compared with 0.0231 minutes in summer 2012 and 0.0198 minutes 
in summer 2013, holding other factors constant.

It is important to note that surface operation delays have the greatest impact on the variation 
of block delays given the magnitude of the estimates for taxi-out and taxi-in delays. In the case of 
the DC Metroplex, this can be explained by the lack of available gates at peak times in summer 
2007 and ramp congestion prior to runway and terminal building enhancements at the three airports 
that were under way in summer 2012 and 2013. This explains why block delays increased 1.28 
minutes on average for a one-minute change in taxi-in time in summer 2007 compared with 0.68 
and 0.84 minutes, respectively, in summer 2012 and 2013, holding all factors constant. As for taxi-
out operations, the implementation of tarmac delays rules7 in April 2010 induced airlines to defer 
departure or cancel flight departures at times of airport congestion or poor weather conditions in 
order to avoid hefty penalties ($27,500 per passenger). 
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In Table 5, the random-effects coefficients represent the estimated deviation from the mean 
intercept and slope for IMC and each airport in IMC. The assumption is that airborne delays exhibit 
more correlation with the other factors at specific airports and meteorological conditions. According 
to OPSNET data, the number of traffic management initiatives (TMI) that includes miles-in-trail and 
minutes-in-trail, airborne holding was higher at the three airports in summer 2012 (1,267) than in 
summer 2007 (1,154) and summer 2013 (1,038). Minutes-in-trail describes the number of minutes 
while miles-in-trail describes the number of miles required between aircraft departing an airport, 
over a fix (a point in space that guides aircraft along a flight path), through a sector, or on a specific 
route. Therefore, additional spacing in time or distance was likely to have an impact of block delays, 
even though the enroute miles flown may have not varied drastically. That may explain why the 
variable “enroute miles flown” was not significant at a 95% confidence level in summer 2012. 

Table 5 shows that the random effects of airborne delays are significant at a 95% confidence 
level whether in IMC or VMC. Regardless of the type of meteorological conditions, only the 
summer 2012 random-effects estimates of airborne delays at each airport were different from zero. 
However, the summer 2012 random-effects estimates were not significant at a 95% confidence level. 
It is also important to point out that the magnitude of the random-effects estimates of airborne delays 
in summer 2007 and 2012 were not significantly different in both meteorological conditions. In 
summer 2013, the magnitude of airborne delays was greater in VMC than IMC. As operations were 
on the rise, traffic management initiatives associated with Time-Based Flow Management between 
the ZDC (Washington Air Route Traffic Control Center) and adjacent centers may have increased 
the incidence of airborne delays to regulate the flow of traffic into the three airports.  

In Table 6, the F statistic in the “Type 3 Tests of Fixed Effects” is the square of the t statistic 
used in the test of the independent variables. Both statistics test the null hypothesis that the slope 
assigned to the dependent variables equals 0. 

Table 6: Type 3 Tests of Fixed Effects
Summer 2007 Summer 2012 Summer 2013

Effect Den 
DF

F 
Value Pr > F Den 

DF
F 

Value Pr > F Den 
DF

F 
Value Pr > F

Enroute Miles Flown 276 11.07 0.001 38.4 3.86 0.0569 3.89 56.41 0.0019

Speed 274 37.95 <.0001 270 28.74 <.0001 269 38.86 <.0001

NAS Delays 274 164.14 <.0001 270 86.61 <.0001 275 41.32 <.0001

Taxi-Out Delays 274 68.75 <.0001 274 25.94 <.0001 272 37.47 <.0001

Taxi-In Delays 275 317.52 <.0001 250 96.66 <.0001 22.8 367.56 <.0001

The slopes in Table 6 are the same as those in Table 4. The significant level (p<0.0001) indicates 
that there is evidence the slopes are not equal to zero and, therefore, significant at a 95% confidence 
level. 

Multiple Regression Outputs

Table 7 shows the multiple regression estimates. The shaded cells highlight the factors that are not 
significant at a 95% confidence level. Compared with the fixed-effects estimates in Table 4, only 
miles flown and speed were not significant at a 95% confidence level in summer 2012 (Table 7). 
While IMC is significant overall during the three sampled time periods, we do not know if there is 
any difference by airport. 
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FINAL REMARKS AND IMPLICATIONS

Hierarchical linear models, including fixed and random 
effects, can provide a better picture of performance 
at a construct such as the metroplex. Metroplexes 
play a significant role in the Next Generation 
Air Transportation System: They represent large 
metropolitan areas where the close proximity of 
airports is likely to create conflicting approaches and 
departure paths, thus reducing access potential to larger 
and general aviation airports. This paper used the 
example of the District of Columbia Metroplex where 
new procedures have been implemented. 

At the metroplex level, enroute miles flown, 
speed, the number of NAS-related delays, and taxi-
out and taxi-in delays have significant fixed effects 
on the variation of actual block times when compared 
with airlines’ flight plans. The study indicates that 
instrument meteorological conditions have a significant 
impact overall. 

As NextGen capabilities and procedures are 
deployed into the NAS, it will be of interest for aviation 
practitioners to assess whether the greater utilization 
of satellite navigation, as well as the implementation 
of performance-based navigation, will have an impact 
on the variation of block delays in metroplexes. While 
pilots’ flexibility to choose trajectories and data-sharing 
in the cockpit are important to reduce excess miles 
flown, the study also suggests that attention should also 
be paid to surface operations’ efficiency in the forms of 
taxi-in and taxi-out times to reduce block delays.

 



DC Metroplex

30

Endnotes

1.	 Created in 1935, RTCA is an organization of aviation experts and practitioners working to 
improve flight performance standards.	

2.	 RTCA, NextGen Mid-Term Implementation Task Force Report, September 9, 2009, p. xiii. 
The document was retrieved in September 2013 at the following website: http://www.faa.gov/
nextgen/media/nextgen_progress_report.pdf.

3.	 Multilevel analysis is also called “random coefficient model” (de Leeuw and Kreft, 1986; 
Longford 1993), variance component model (Longford, 1987), hierarchical linear model 
(Raudenbush and Bryk, 1986 and 1988), as well as mixed effects model (Littell et al. 1996). 
Also refer to Hox (2002:11).

4.	 The definitions of the causes of delay were retrieved at the website of the U.S. Department of 
Transportation, Bureau of Transportation Statistics, whose link is http://www.rita.dot.gov/bts/
help/aviation/html/understanding.html#q4.

5.	 See SAS/Stats® 9.2, User’s Guide, Second Edition, retrieved at http://support.sas.com/
documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_mixed_sect034.htm.

6.	 Federal Aviation Administration, NextGen Performance Snapshots, “Honoring the Past While 
Flying into the Future,” retrieved at http://www.faa.gov/nextgen/snapshots/stories/?slide=16.

7.	  See 14 Code of Federal Regulation (CFR) 259.4 for the tarmac delay contingency plans. 
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APPENDIX: Arrival and Departure Flows at the DC Metroplex

source: ATAC

ACRONYMS

AIC	 Akaike Information Criterion
AICC	 Akaike Information Criterion corrected for finite sample sizes
ASPM	 Aviation System Performance Metrics
ATC	 Air Traffic Control
BIC	 Bayesian Information Criterion
BTS	 Bureau of Transportation Statistics
BWI	 Baltimore/Washington International Thurgood Marshall Airport
DCA	 Washington Reagan National Airport
FAA	 Federal Aviation Administration
IAD	 Washington Dulles International Airport
IMC	 Instrument Meteorological Conditions
NAS	 National Airspace System
NextGen	 Next Generation Air Transportation System
OPD	 Optimized Profile Descent
OPSNET	 Operations Network
PBN	 Performance-Based Navigation
RNAV	 Area Navigation
RNP	 Required Navigation Procedure 
RTCA	 Radio Technical Commission for Aeronautics
TBFM	 Time-Based Flow Management
TFMS	 Traffic Flow Management System
VMC	 Visual Meteorological Conditions
ZDC	 Washington Air Route Traffic Control Center
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