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Is the Decision to Code-Share a Route 
Different for Virtual and Traditional 
Code-Share Arrangements
by Yan Du and B. Starr McMullen

This paper analyzes factors that determine whether alliance carriers choose to remain in or leave 
a code-share agreement on individual routes. Different types of code-sharing are considered: 
traditional code-shared routes, virtual code-shared routes and those routes with both traditional 
and virtual code-sharing.  Empirical results show that factors affecting alliance firms’ code-sharing 
decisions significantly differ for virtual versus traditional code-share agreements. Virtual code-
sharing tends to take place in less dense markets and is not significantly affected by yields. This 
provides tentative support for the Ito and Lee (2005) argument that virtual code-sharing provides a 
mechanism by which carriers practice price discrimination (for instance, filling unoccupied seats 
in less dense markets). In contrast traditional code-sharing is found to be more likely to occur in 
dense markets and higher yields increase the probability of such arrangements.  Thus, traditional 
code-sharing seems to be used to achieve the networking economics and cost savings derived from 
dense markets and thus appears to be more effective as an instrument to introduce competition into 
a market.

INTRODUCTION

Code-sharing, a phenomenon originally observed in international airline markets, emerged as a 
popular and important form of alliance in the U.S. domestic airline industry in the mid-1990s. 
Considerable research has focused on the impact of code-sharing on  air fares, passenger volumes, 
and consumer welfare either in the international or U.S. domestic airline markets (Brueckner 2001, 
2003; Brueckner and Whalen 2000; Hassin and Shy 2004; Oum, Park and Zhang 1996; Park 1997; 
Park and Zhang 2000; Park, Park, and Zhang 2003; Park, Zhang, and Zhang 2001; Bamberger, 
Carlton, and Neumann 2004; Armantier and Richard 2006, 2008; Du, McMullen, and Kerkvliet 
2008; Heimer and Shy 2006; Gayle 2008).  

However, Ito and Lee (2005, 2007) have suggested that it may be important to distinguish 
between traditional code-sharing and virtual code-sharing. Whereas traditional code-sharing 
typically refers to combining the networks of two distinct operating carriers, virtual code-sharing 
involves a single operating carrier and a marketing carrier that differs from the operating carrier.1 
Ito and Lee (2005) argue that the majority of the U.S. domestic code-sharing fit the definition of 
virtual code-sharing. They find that fares in virtual code-share markets tend to be lower than pure 
online or traditional code-share fares. This leads them to hypothesize that virtual code-sharing is 
used by carriers as a means of product differentiation rather than as a means to enter markets and 
exploit profitable opportunities as usually thought for traditional code-share arrangements. They 
argue that the customer of an individual carrier may place a greater value on that carrier’s service; 
thus the price that consumers are willing to pay for a pure online Continental flight for instance, 
which is both operated and marketed by Continental may be higher than the price for the same flight 
if marketed by America West.  The fact that some frequent flyer programs may not count the flight 
if it is marketed by a code-share partner makes the incentive for virtual code-sharing even stronger.

To provide more information on the motivation for entering into virtual rather than traditional 
code-share arrangements on individual routes, this paper extends a recent study by McMullen and 
Du (2012) in which the determinants of route level participation in the America West and Continental 
code-share agreement were examined. McMullen and Du (2012) find the decision to enter into code-
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sharing on a route was positively influenced by the yield, alliance firm hub dominance, booking 
frequencies, and vacation routes; code-sharing was less probable when the route was concentrated 
and when there was airport congestion.  However, in that study there was no distinction made 
between traditional and virtual code-shared routes.  

The purpose of this paper is to see whether the decision to enter into code-sharing on a route is 
significantly different for virtual and traditional code-shared routes. If virtual code-sharing is used 
more as a tool for product differentiation as hypothesized by Ito and Lee (2005, 2007), the decision 
to virtually code-share a route may depend on different factors than those for traditional code-share 
arrangements.  In that case, it may be appropriate for government regulators to consider the nature 
of code-sharing (virtual or traditional) first when considering the possible competitive implications 
of such arrangements.

BACKGROUND

The America West and Continental code-share arrangement, which spanned the 1994-2002 period, 
was the first domestic code-share alliance between U.S. carriers and was one of the longest lasting 
domestic code-share agreements  When this arrangement started, America West Airlines was the 
second largest low-cost air carrier in the U.S. (later operating as U.S. Airways) and was one of 
deregulation’s greatest successes. However, rapid expansion without proper handling of large 
operating losses placed the company at the verge of bankruptcy, and rising fuel prices due to 
instability in the Persian Gulf finally led America West to file for bankruptcy in 1991. In 1994, 
America West was able to secure reorganization resulting in a large portion of the airline being owned 
by a partnership with Continental Airlines. This ultimately resulted in the code-shared arrangement 
with Continental and heralded the beginning of code-sharing alliances for the domestic U.S. airline 
industry. Previous to this agreement, code-sharing had been used extensively in international 
markets but not on solely domestic routes.  
          Although the America West-Continental code-share agreement went into effect in 1994, data are 
only available from 1998Q1 to 2002Q4.2  Throughout the arrangement, firms continually reassessed 
their decision to code-share on individual routes and then changed their code-share arrangements 
accordingly (McMullen and Du 2012).

EMPIRICAL HYPOTHESES AND VARIABLE DEFINITIONS

In this paper, we focus only on code-shared routes that involve one-stop flight service. Compared 
with non-stop or multi-stop flights, a one-stop flight through a code-share arrangement is more 
comparable to a pure online flight (operated by a single carrier) that has one stop.  Due to the 
limitations of our data set, we include only routes on which Continental and America West code-
shared for at least one quarter during the1998-2002 sample period.  On some routes, code-sharing 
began at the very start of the alliance agreement and lasted for the entire alliance period, while on 
other routes, code-sharing occurred for a time period after which the route was dropped.  Sometimes 
a route was added and dropped several times during the alliance period, whereas others were code-
shared for one quarter and then dropped forever.

To account for all these circumstances, we assume firms make their code- sharing decisions at 
the beginning of each quarter for each route. Thus, our dependent variable is a qualitative response 
variable that represents the code-share decision. The dependent code-share decision variable 
DECISIONit is valued at 1if alliance firms engaged in code-sharing on that route during period t and 
valued at 0 if there was no code-sharing on the route during period t.

We assume the density of the dependent variable DECISIONit follows an exponent distribution 
with the probability of code-sharing denoted as πit. The classical logistic regression model is then 
specified as 

(1) 01
it
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it

π
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Where X is a matrix of the explanatory variables that includes characteristics of both incumbents and 
alliance firms’ flight operations as well as those of relevant routes and airport markets.

  Finally, we include the same set of explanatory variables used by McMullen and Du (2012) to 
control for route specific characteristics on each route. This allows us to compare the results found 
when no distinction is made between the two types of code-share arrangements (traditional and 
virtual) to results for each type of code-sharing separately. Accordingly, the matrix of explanatory 
variables, X, includes the following: 

Average Yield. YLDi,t–1 is defined as the average price per passenger mile on route i in the previous 
quarter t-1. Average price is calculated as the weighted average of per passenger air fares from all 
carriers operating in the market. For traditional code-sharing we expect higher average yields from 
the previous period to increase the probability of code-sharing because high yields indicate high 
profitability from a code-sharing alliance.

Booking Frequencies. FREi,t–1 is defined as the number of bookings by incumbent carrier customers 
on route i in the previous time period, t-1.  This is used as a proxy for flight frequency, which was 
not available for this data set. It is hypothesized that increases in flight frequency indicate higher 
potential market demand that results in a greater probability of entry into code-sharing. Note that 
both FREi,t–1 and YLDi,t–1 are lagged one period to avoid any potential endogeneity.

Route Level Competition Level. RHHIi,t–1 is defined as Herfindahl Hirschman Index (HHI) on 
route i at time t-1. HHI is calculated using the number of passengers carried by individual carriers 
on a specific route.  If high concentration creates an effective barrier to entry, this may make code-
sharing less likely on routes with a high HHI.  However, if profits are high on high HHI routes and 
code-sharing is an easier way to enter than entering with new service, code-sharing may be more 
likely to occur. Thus, the overall effect of route competition level on the probability of code-sharing 
is uncertain.3

Population. POPit is defined as the product of the populations at the endpoints of the Metropolitan 
Statistical Areas (MSAs) on route i at time t. This is a proxy for the potential market size, and we 
expect that a larger population will lead to higher travel demand and thus a higher probability of 
code-sharing.

Per Capita Income. INCOit is defined as the product of the per capita income for MSAs at endpoints 
of route i at time t.  We expect higher per capita income to result in higher air travel demand and 
therefore a greater probability of code-sharing.

Vacation Dummy. VACi was set equal to 1 if one of the endpoint airports was in Florida, Hawaii, 
Nevada, or Puerto Rico, otherwise it is equal to 0.  We expect the sign to be positive as vacation 
routes will generate more passengers than non-vacation routes, all other factors being equal. 

Hub Dummies for Code-shared Firms. If either the endpoint airports (ORIHUBi and DESTHUBi) 
or the connecting airport (CONHUBi) are hubs for code-shared firms, then the dummy variable takes 
a value of 1.  These variables are chosen to capture the benefits carriers may obtain from economies 
of traffic density on their hub-and-spoke network systems. We expect that the alliance firm hubs 
at either endpoint or at the connecting airport may increase the probability of code-sharing on the 
route. Table A1 in the Appendix provides a list of hubs for all major carriers in the United States 
during this study time period.

Slot Control Dummy. SLOTi . During the time period for this study, the USDOT had limits set on 
the number of takeoffs and landings that could take place in any given hour period at four airports: 
Chicago, O’Hare; New York, J.F. Kennedy and La Guardia; and Washington, Reagan National 
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Airport. If either end point or connecting airport is a slot-controlled airport, then SLOTi equals 1 
otherwise 0. A negative coefficient is expected, indicating that the presence of slot controls reduces 
the probability of code-sharing.

Gate Constraints Dummy. GATEi .  In addition to slot controls, there were six airports (Charlotte, 
Cincinnati, Detroit International, Minneapolis, Newark, and Pittsburgh) in which long-term, 
exclusive use gates are thought to create barriers to entry (USGAO 1993). If either the endpoint 
or connecting airport is a gate-constrained airport, then GATEi equals 1 otherwise 0. We assume 
code-sharing will be deterred in the airports with gate constraints due to airport congestion (Dresner, 
Windle, and Yao 2002).

Quarterly Dummies. WINt , SPRt , SUMt were used to control for seasonal fixed effects on air travel 
demand.

Time. TIMEt measures the longevity (in years) of the initial code-sharing alliance.  For instance, 
if the code-share route arrangement began in 1994, then TIMEt = 5 in year 1998, 6 in year 1999, 
7 in year 2000, 8 in year 2001, and 9 in year 2002. The expected sign of the time coefficient is 
ambiguous.  On one hand, the longer firms stay in an alliance, the better the reputation of the alli-
ance and the lower the continuation cost, suggesting a positive relationship between TIMEt and the 
probability of code-sharing. However, as time passes, market situations may change dramatically, 
firms’ financial situations and operating strategies may change, government policy may change, and 
experience in the market may either increase or decrease the attractiveness of code-sharing.

DATA

Our complete data sample has 55,120 quarterly observations on a total of 2,756 routes that were 
code-shared by Continental and America West Airlines at some time during 1998Q1 to 2002Q4 
period.  Among the 2,756 code-shared routes, 1,113 (or 40%) of routes were purely traditional 
code-shared routes (TCS), 793 (or 29%) of routes were purely virtual code-shared (VCS) and 850 
(or 31%) of routes contained both traditional and virtual code-shared segments (TVCS). Every 
observation is route and time specific. Table 1 shows the descriptive statistics.

The data for the number of passengers and per passenger air fares for individual carriers on 
route i at time t are from the U.S. Department of Transportation (USDOT), Bureau of Transportation 
Statistic’s (BTS) Origin and Destination Survey DB1B Market, a 10% ticket random sample data set. 
YLDit is calculated as the average price per passenger mile on route i at time t where average price is 
calculated as the weighted average of the per passenger air fare for all air carriers operating on that 
route. The data for the code-sharing decision DECISIONit are collected by tracking each route that 
was ever code-shared by Continental and America West Airlines, quarter by quarter. The data for the 
number of booking frequencies FLTSit and the calculation of route concentration RHHIit are from 
DB1B Market. Hub dummies are identified from each air carrier’s website.4 The data for population 
POP_ORIGINit and POP_DESTit and per capita income INCOME_ORIGINit and INCOME_DESTit 
at origin and destination airport MSAs are from the U.S. Department of Commerce, Bureau of 
Economic Analysis (BEA). The slot control and gate constraints dummies are obtained from reports 
by the U.S. General Accounting Office (1993).
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Table 1: Descriptive Statistics
Variables (Descriptions and Units) Mean Std Dev

DECISIONit (Equals 1 if the alliance firms code-shared on route i, otherwise 0) 0.1884 0.391

YLDit-1 (Average air fare from t-1 in dollars per passenger mile in the one-stop 
market of route i)

0.0676 0.027

FREit-1 (All incumbent customers’ booking frequencies from t-1 on route i) 421 337

RHHIit-1 (HHI from t-1 in the one-stop market of route i ) 2739 1507

INCOME_ORIGINit (Per capita income in dollars at the MSA of the origin airport 
on route i)

18126 3262

INCOME_DESTit (Per capita income in dollars at the MSA of the destination 
airport on routei)

18082 3288

POP_ORIGINit (Population at the MSA of the origin airport on route i) 4061988 4654822

POP_DESTit (Population at the MSA of the destination airport on route i) 4075897 4667366

SLOTi (Equals 1 if either the endpoint or the connecting airport is slot-controlled) 0.0722 0.2589

GATEi (Equals 1 if either the endpoint or the connecting airport has gate 
constraints)

0.2496 0.4328

VACi (Equals 1 if either the endpoint or connecting airport on route i is in FL, HI 
or NV; otherwise 0)

0.3792 0.4852

ORIHUBi (Equals 1 if the origin airport on route i is the alliance firms’ dominated 
hub or focus city)

0.3266 0.469

CONHUBi (Equals 1 if the connecting airport on route i is the alliance firms’ 
dominated hub or focus city)

0.8545 0.353

DESTHUBi (Equals 1 if the destination airport on route i is the alliance firms’ 
dominated hub or focus city)

0.3193 0.4662

WINt (Equals 1 if the quarter is in Jan-Mar; otherwise 0) 0.25 0.433

SPRt (Equals 1 if the quarter is in Apr-Jun; otherwise 0) 0.25 0.433

SUMt (Equals 1 if the quarter is in Jul-Sep; otherwise 0) 0.25 0.433

TCSi  (Equals 1 if the route was once traditionally code-shared; otherwise 0) 0.7123 0.453

VCSi  (Equals 1 if the route was once virtually code-shared; otherwise 0) 0.5962 0.4907

TIMEt  (Equals 5 if in year 1998, 6 in 1999, 7 in 2000, 8 in 2001, 9 in 2002) 7 1.414

All the dollar values are deflated by Consumer Price Index (1982-84=100).

ECONOMETRIC MODELS AND EMPIRICAL RESULTS

Following Molenberghs and Verbeke (2005) for the study of discrete longitudinal data, we apply 
subject-specific models for the analysis of the discrete longitudinal data set, in which the dependent 
variable is non-Gaussian repeated binary measures.5

In subject-specific models, when responses are binary, the effect of covariates on the response 
probabilities is conditional upon the level of the subject-specific effect. A unit change in the covariate 
translates into an appropriate change in probability, keeping the level of the subject-specific effect 
fixed (Neuhaus, Kalbfleisch, and Hauck 1991). Although subject-specific parameters can be dealt 
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with either as fixed or random effects, the fixed effects approach is subject to criticism due to 
possible inconsistency of the so-obtained maximum likelihood estimates. Therefore, we follow 
McMullen and Du (2012) and use Generalized Linear Mixed Models (GLIMM) estimated using 
Penalized Quasi-likelihood (PQL) methods from Breslow and Clayton (1993), the most frequently 
used random effects model in the context of discrete repeated measurements.6,7,8

We apply the GLIMM methodology to four different regression scenarios: the first regression 
duplicates the McMullen and Du (2012) pooled sample of all 2,756 code-shared routes in which 
there is no distinction between the TCS, VCS, or TVCS types of code-sharing. The additional three 
regressions are run on three mutually exclusive subsets of this pooled data set, namely: the 1,113 
pure traditional code-shared (TCS) routes, the 793 purely virtual code-shared (VCS) routes, and 
the 850 routes that involved both traditional and virtual code-sharing (TVCS). We then compare 
the regression results to see whether there are differences in the importance of specific variables 
affecting the decision to enter into a TCS differ versus a VCS arrangement.

Table 2 compares the fixed effect parameter estimates from the GLIMM regression in the four 
different regressions.  More detailed regression results and a comparison of standardized coefficients 
from the GLIMM regression on the pooled routes, TCS, VCS and TVCS routes are provided in 
Appendix Table 4 and 5.9

GLIMM regression results for the TVCS sample are very similar to those reported for the 
pooled sample of code-share routes as in McMullen and Du (2012). The main difference is that the 
route level concentration as measured by the Herfindahl Hirschman Index (HHI) does not have a 
significant impact on the decision to engage in this TVCS kind of code-shared route.   

The first notable difference between the TCS and VCS results is that higher yields have a 
positive and significant impact on the decision to engage in a TCS arrangement, but no significant 
effect at all upon the decision to engage in a VCS arrangement.10

Consistent with the McMullen and Du (2012) results for the pooled sample, route concentration 
level, as measured by HHI, significantly deters code-sharing entry on both TCS and VCS routes.11   
While airport congestion, measured by slot control (SLOT) and gate constraints (GATE), have 
significant and negative coefficients in the pooled sample and SLOT also significantly reduces TCS, 
for VCS routes neither congestion measure has a  statistically significant coefficient.12 A vacation 
route significantly affects the probability of code-sharing in the pooled sample and on the TCS 
routes but not on the VCS routes. This result supports the hypothesis that vacation routes generate 
more passengers than non-vacation routes, therefore increasing the probability of code-sharing.  
Carriers choose to traditionally code-share on vacation routes because of the potential route density.  
 The significant and negative coefficients for INCO and POP for VCS routes show that carriers 
engage in VCS arrangements in less dense, less congested, and lower income markets.  These 
results provide further evidence that VCS routes are not being used to generate more passengers, 
but to allow segmentation of the passengers in the market that is necessary for price discrimination, 
supporting Ito and Lee’s (2005, 2007) argument that VCS routes serve to price discriminate rather 
than as a mechanism for firms to compete with each other in the market.

On a specific route, as found in the pooled sample, hub dominance at the end point or connecting 
airports positively and strongly affects the probability of code-sharing on the TCS routes. On the 
VCS routes, only hub dominance at the connecting airport (CONHUB) has a significant impact 
on the probability of code-sharing.  Hub dominance at the origin (ORIHUB) or destination 
(DESTHUB) does not affect alliance firms’ virtual code-share decisions.13  This difference between 
code-share decisions for TCS and VCS routes reflects alliance firms’ marketing strategies: carriers 
may take advantage of hub dominance to exercise market power and extract monopoly rents through 
traditional code-share agreements.  However, hub-dominated airports where economies of scale or 
traffic density can be achieved are not necessarily the top priority for virtual code-sharing.
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Table 2:  Comparison of GLIMM Regression Results in Different Scenarios on Pooled, TCS,   
 VCS or TVCS Routes

Pooled Routes TCS Routes VCS Routes TVCS Routes
INT -1.04****

(-6.01)
-1.56****

(-7.83)
2.51****

(8.11)
-.84***
(-2.32)

FLTS i,t-1 3.07E-04****
(3.3)

1.74E-04
(1.53)

-5.32E-05
(-.35)

7.35E-04****
(4.49)

YLD i,t-1 14.38****
(16.36)

6.82****
(7.8)

1.11
(.69)

26.39****
(14.58)

RHHI i,t-1 -1.70E-04****
(-9.17)

-4.12E-05****
(-2.33)

-1.21E-04****
(-3.16)

-5.44E-05
(-1.14)

INCOit 7.54E-04***
(2.2)

-3.1E-04
(-.92)

-3.9E-03****
(-6.52)

4.1E-03****
(6.04)

POPit 2.09E-03***
(2.12)

8.00E-04
(.65)

-3.3E-03***
(-2.1)

1.99E-03
(1.14)

SLOTi -1.28****
(-11.2)

-.60****
(-4.25)

0.06
(.43)

-2.04****
(-7.9)

GATEi -.27****
(-4.07)

-0.06
(-.93)

-0.05
(-.46)

-.59****
(-4.54)

VACi .44****
(7.67)

.11**
(1.88)

0.06
(.73)

0.16
(1.42)

ORIHUBi .86****
(13.71)

0.40****
(6.56)

-0.07
(-0.63)

1.01****
(8.53)

CONHUBi 1.53****
(16.84)

0.41****
(4.74)

0.37****
(2.75)

1.63****
(7.86)

DESTHUBi 0.90****
(14.49)

0.30****
(4.52)

0.06
(.59)

1.05****
(8.9)

TIME -0.55****
(-52.1)

-0.24****
(-13.6)

-0.57****
(-24.8)

-0.78****
(-45.8)

WINt 0.46****
(12.61)

0.14***
(2.08)

0.60****
(7.86)

0.64****
(11.47)

SPRt 0.25****
(6.67)

0.13***
(1.96)

0.17***
(2.14)

0.38****
(6.83)

SUMt -0.05
(-1.43)

-0.08
(-1.13)

-0.01
(-0.07)

-0.07
(-1.26)

**p=0.1 level; ***p=0.05 level; ****p=0.01 level.

As time passes, the probability of code-sharing tends to decrease significantly in every scenario 
though the impact level is different.  The odds of code-sharing decrease by 43% on a VCS route 
and by 22% on a TCS route as one more year passes.14 This implies that alliance firms tend to end 
the virtual code-sharing more easily than the traditional one as time passes, which only makes sense 
since a VCS arrangement involves no actual deployment of resources to operate flights and thus is 
easier to enter or exit.
 Finally, alliance firms tend to code-share in the winter and spring on TCS, VCS, TVCS routes 
and the pooled sample. Summer, as well, does not significantly affect any type of code-sharing. This 
is because code-sharing helps generate traffic in off-seasons such as winter, spring, and fall, whereas 
the travel demand is usually seasonally high in the summer, leading to smaller incentives to code-
share.
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CONCLUSIONS

Our empirical results show that code-sharing decisions are influenced by different factors for virtual 
(VCS) versus traditional (TCS) code-shared routes.  The decision to engage in a traditional code-
share arrangement is significantly influenced by average yield from previous period, slot controls, 
whether the route is a vacation route, and hub dominance at both the connecting and  endpoint 
(origin and destination)  airports.  These same factors do not appear to be important determinants 
of the decision to engage in virtual code-sharing.  While income and population were not found to 
be significant determinants of the decision to engage in traditional code-sharing, higher incomes 
and populations significantly lower the probability of virtual code-sharing.  Finally, greater route 
concentration as measured by the Herfindahl Index significantly lowers the probability of code-
sharing for both traditional and virtual code-shared routes.

Overall, these findings imply that virtual code-sharing tends to take place in less dense markets,  
which may not support many carriers or flights, in contrast to traditional code-sharing, which is 
undertaken to achieve the networking economics and cost savings derived from dense markets. 
These results support Ito and Lee’s (2005, 2007) argument that virtual code-sharing is used by 
alliance firms as a generic or qualitatively inferior product to further segment customers between 
those who are willing to purchase the branded premium product (pure on-line ticket) and those who 
are not. VCS fares are generally lower than TCS fares and also lower than fares on routes where no 
code-sharing occurs (the operating carrier is the same as the ticketing carrier for the entire route).
Thus, code-sharing may provide the airline a way to practice price discrimination on a flight to fill 
up seats without losing revenue by having to lower fares for all customers.  

From the perspective of government agencies or policy makers, the distinction between 
traditional and virtual code-sharing may have important implications for policy. Virtual code-sharing 
takes place in less dense markets and is not significantly affected by yields, therefore does not appear 
to be a mechanism by which carriers compete with each other for market share but rather allows a 
carrier that is already providing service on a route to fill up planes in less dense markets.  Traditional 
code-sharing seems to be more effective as an instrument by which competition is introduced into 
a market as higher yields in a market definitely increase the probability of such arrangements.
However, the results here show that although code-sharing may help increase competition in 
markets by inducing entry when prices are high, such entry, either by traditional or virtual code-
share arrangements, is significantly impeded by high market concentration on the route.  Therefore, 
monitoring competitive conditions on the VCS routes to insure against the possible exercise of 
market power in the alliance carriers’ hubs (or focus cities) are not as important as for the TCS 
routes, though government agencies should be alert for anti-competitive behavior on the part of 
market incumbents on highly concentrated TCS or VCS routes.

Acknowledgements 

This research is funded by College Research Grant 2012-13 of Beijing Normal University-Hong 
Kong Baptist University United International College (BNU-HKBU UIC) under financial code 
R201324. The authors wish to thank participants in paper sessions at the 88th Western Economic 
Association International Conference (WEAI) for helpful comments and suggestions.

Endnotes

1. For example, a virtual code-share itinerary may consist of a connection between two Continental 
flights (CO: CO) or two America West flights (HP: HP) while the entire ticket is marketed or 
sold by America West (HP: HP) or Continental Airlines (CO: CO), respectively.  Virtual code-
sharing could also occur on a direct flight itinerary if the operating carrier was CO or HP but 
the marketing carrier was HP or CO, respectively.  If the operating carrier is Continental on 
both segments of an itinerary (CO: CO) but one segment of the ticket is sold by America West 
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while the other segment is sold by Continental (CO: HP or HP: CO), then the itinerary is called 
semi-virtually code-shared. Even though under virtual code-sharing, the marketing carrier does 
not receive any operating revenue other than a nominal commission, it benefits from a more 
frequent flight schedule due to its larger virtual network provided by the operating carrier.

2. Information on code-shared routes between Continental and America West is available from 
Bureau of Transportation Statistics (US Department of Transportation) only from 1998 because 
of reporting requirements adopted by the Congress in 1998.

3. All these three covariates YLDit-1, FREit-1, and RHHIit-1, are the moving averages in the past four 
quarters from t-1 to t-4 to smooth out the seasonal effect on these variables.

4. We also use the number of flights, yield, and route HHI calculated from the direct service 
market or the whole market, which includes direct, one-stop and multi-stop services on a route 
as the covariates, but the parameter estimates are strongly insignificant. 

5. In longitudinal settings, each individual has a vector of responses with a natural (time) ordering 
among the components. Non-Gaussian longitudinal cases include repeated binary or ordinal 
data, or longitudinally measured counts. 

6. Neyman and Scott (1948) show that in a fixed-effect model, if the number of subjects is getting 
larger while the number of time points remains constant, the number of parameters is increasing 
at the same rate as the sample size, which leads to inconsistency of the so-obtained maximum 
likelihood estimates. This is a well-known result in the context of logistic regression for binary 
data.

7. Let Yit  be the tth outcome measured for subject i, i=1, …, N, t=1, …, ti  and Yi  is the ti dimensional 
vector of all measurements available for subject i. The GLIMM model is then formalized 
as  Yit | bi – – Bernoulli(πit ) where random effects bi are assumed to be drawn independently 
from the N (0, G) and the responses Yit of Yi are independent with densities of an exponential 

distribution. The conditional means E(Yit | bi) are given by   which 

can be rewritten as   where πit = P(Yit = 1|bi, X), β0 is the  

constant term, and β is a p-dimensional vector of unknown fixed regression coefficients, 
common to all subjects. 

8. The density of an exponential distribution for Yit takes the form as follows 
 with ϕ a scale parameter, i.e.   

for a known link function η(.), and for xit and zit two vectors containing known covariates.  The 
density of the N (0, G) distribution for the random effects bi is denoted as f (bi | G).

9. Standardized coefficients are the estimates resulting from an analysis performed on variables 
that have been standardized so that they have variances of 1.  It is usually used to answer the 
question of which of the independent variables has a greater impact on the dependent variable 
in a multivariate regression analysis, when the variables are measured in different units of 
measurement.

10. On the TCS routes, the odds of code-sharing increase 98% for every increase of 0.1 dollar in the 
yield. The calculation is as follows: 1.98-1=0.98, in which 1.98 is the odds of code-sharing for 
the variable average yield (YLDit-1).  Please refer to the odds for different variables provided in 
Appendix Table A2. The calculation of odds for other variables follows the same way.
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11. Please refer to Table A2 in the Appendix. For every increase of 1,000 in the value of HHI, the 
odds of code-sharing decrease by 4% on TCS routes (0.96-1 = -0.04 = -4%, in which 0.96 is the 
odds ratio of code-sharing for the variable RHHIit-1) but only 0.01% on VCS routes. (0.9999 -1 
= -0.0001 = -0.01%, in which 0.9999 is the odds ratio of code-sharing for the variable RHHIit-1.)

12. See Table A2 in the Appendix.  The odds ratio of code-sharing on a slot-controlled TCS route is 
only 0.55 times the odds on a TCS route without slot-control.

13. See Table A2 in the Appendix. On the TCS routes, the impact of the hub airports is smaller 
than in the pooled sample: the odds ratios of code-sharing when the origin, connecting, and 
destination airports are hubs (or focus cities) are 1.49, 1.50, and 1.34 times (compared with 
2.35, 4.6, and 2.47 in the pooled sample) the probability of code-sharing when none of the 
airports is a hub (or focus city), respectively.  By contrast, the odds ratio of code-sharing is 1.45 
times the probability if the connecting airport is not a hub on the VCS route.

14. Please refer to the odds for different variables provided in Table A2 in the Appendix. The 
calculation is as follows: 0.57-1 = -0.43 = -43% and 0.78-1 = -0.22 = -22%, in which 0.57 and 
0.78 are the odds ratios of code-sharing for the variable TIME on the VCS and TCS routes, 
respectively.
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APPENDIX

Table A1: U.S. Major Air Carriers and Their Hubs and Focus Cities*

Major Carriers Hubs Second      
Hubs Focus Cities

American Airlines DFW, ORD, MIA, STL, SJU JFK, LGA BOS, LAX, RDU
Alaska Airlines SEA, ANC, PDX, LAX SFO
Continental Airlines IAH, EWR, CLE
Delta Air Lines ATL, SLC, CVG, JFK LAX MCO, LGA, BOS
Northwest Airlines DTW, MSP, MEM IND, HNL
United Airlines ORD, DEN, IAD, SFO, LAX
US Airways CLT, PHL, PHX, LAS DCA, LGA, PIT
America West PHX, LAS, PHL, CLT PIT DCA, LGA, BOS
ATA Airlines MDW HNL,OAK
Horizon Air SEA, PDX, LAX DEN
Frontier Airlines DEN

Southwest Airlines LAS, MDW, PHX, BWI, OAK, 
HOU, DAL,LAX, MCO, SAN

JetBlue Airways JFK, BOS, FLL, OAK, IAD
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*Lists of Airport Abbreviations and the Full Names
Abbr. Full Name 

DFW Dallas-Fort Worth International Airport

ORD Chicago O’Hare International Airport

MIA Miami International Airport

STL Lambert-St. Louis International Airport

SJU Luis Munoz Marin International Airport in Puerto Rico.

JFK John F. Kennedy International Airport

LGA LaGuardia Airport

BOS Boston Logan International Airport

LAX Los Angeles International Airport

RDU Raleigh-Durham International Airport

SEA Seattle-Tacoma International Airport

ANC Ted Stevens Anchorage International Airport

PDX Portland International Airport

SFO San Francisco International Airport

IAH Houston George Bush Intercontinental Airport

EWR Newark Liberty International Airport

CLE Cleveland Hopkins International Airport

ATL Hartsfield-Jackson Atlanta International Airport

SLC Salt Lake City International Airport 

CVG Cincinnati/Northern Kentucky International Airport

MCO Orlando International Airport

DTW Detroit Metropolitan Airport

MSP Minneapolis-Saint Paul International Airport

MEM Memphis International Airport

IND Indianapolis International Airport

HNL Honolulu International Airport

DEN Denver International Airport

IAD Washington Dulles International Airport

CLT Charlotte Douglas International Airport

PHL Philadelphia International Airport

PHX Phoenix Sky Harbor International Airport

LAS McCarran International Airport

DCA Ronald Reagan Washington National Airport

PIT Pittsburgh International Airport 

MDW Chicago Midway Airport

OAK Oakland International Airport

BWI Baltimore/Washington International Thurgood Marshall Airport

HOU Houston George Bush Intercontinental Airport

DAL Dallas Love Field Airport

MCO Orlando International Airport

SAN San Diego International Airport

FLL Fort Lauderdale-Hollywood International Airport
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