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Local Sensitivity Analysis of Forecast Uncertainty 
in a Random-Utility-Based Multiregional Input-
Output Model
by Guangmin Wang and Kara M. Kockelman

Transportation systems are critical to regional economies and quality of life. The Random-Utility-
Based Multiregional Input-Output Model (RUBMRIO) for trade and travel choices is used here 
to appreciate the distributed nature of commodity flow patterns across the United States’ 3,109 
contiguous counties and 12 industry sectors, for rail and truck operations. This paper demonstrates 
the model’s sensitivity to various inputs using the method of local sensitivity analysis with interactions 
(LSAI). This work simulates both individual effects as well as interaction effects of model inputs on 
outputs by providing sensitivity indices of model outputs to variations of inputs under two scenarios. 
Model outputs include predictions of domestic and export trade flows, value of goods produced, 
labor expenditures, and household and industry consumption levels across the counties in the 
United States. The LSAI technique allows transportation system operators to appreciate the roles of 
any model input and the associated uncertainty of outputs.

INTRODUCTION

Transportation systems are critical to regional economies and planning. Their spatial structures 
and cost implications dramatically affect household and firm location choices, production levels, 
and trade patterns in multiple ways. These choices manifest themselves in various forms of travel 
demand, impacting the operational performance of the transportation system. To recognize this 
critical interaction and enhance planning, policy, and investment decisions, integrated models of 
transportation and land use have been pursued.

Traditional Input-Output (IO) models are popular for simulating expenditure linkages between 
industries, and between producers and consumers (Leontief and Strout 1963). These models are 
demand driven in the sense that production levels adjust to meet both final and intermediate demands. 
Spatial (or interregional, inter-zonal) IO (SIO) analysis extends the classical IO model to include 
spatial disaggregation when coupled with random utility theory for the distribution of productive 
input, such as MEPLAN (Hunt and Simmonds 1993; Abraham and Hunt 1999; Rodier et al. 2002; 
Clay and Johnston 2006), TRANUS (De la Barra et al. 1984; De la Barra 2005; Modelistica 2007; 
Lefevre 2009), and PECAS (Hunt and Abraham 2003). These models can be made dynamic, by 
allowing the travel costs associated with freight and people (labor and customer) flows to affect 
location and land use decisions in the model’s next iteration, along with network system changes 
(e.g., roadway expansions) and exogenous economic shocks (e.g. increases in export demands). 
Entropy concepts were then proposed, to establish a connection between SIO models, entropy-
maximizing theory, and random-utility theory (Wilson 1970; Anas 1984).

Isard (1960) first proposed the extension of the IO model to multiple regions; therefore, it may 
be referred to as Random-Utility-Based Multiregional Input-Output (RUBMRIO) models. These 
combine traditional SIO models with a multinomial logit (MNL) model for trade and travel choices 
to represent the distributed nature of commodity flow patterns. De la Barra (2005) suggested the 
standard algorithm for the RUBMRIO model, which is usually solved by iteratively applying a set 
of equations. Each equation describes a key model variable.

Kockelman et al. (2005) developed a RUBMRIO model of Texas trade. Their RUBMRIO 
model described the production and trade patterns of 18 socio-economic sectors (including 
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households and government) across Texas’ 254 counties. Production and trade typically are driven 
by export demands at 31 key ports, while specific trade patterns respond to prices, measured in 
utility units and based on expected minimum transportation costs (represented by distance on a two-
mode highway/railway network). Their applications considered network and corridor congestion 
and the multiplier effects of shifts in demand, by port and sector. Ruiz-Juri and Kockelman (2004) 
extended the RUBMRIO model to recognize land use constraints on production (and residence), to 
incorporate domestic demands by other U.S. states, estimate vehicle trips resulting from monetary 
trades, and capture the effects of the network congestion on trade and production decisions. Based 
on the above work, Huang and Kockelman (2008) extended the RUBMRIO model to characterize 
near-term production and trade patterns based on current settlement and earnings patterns, and to 
introduce dynamic features, which forecast the evolution of a region’s trade patterns – from a state 
of short-term disequilibrium to longer-run scenarios. Du and Kockelman (2012) extended work by 
Kockelman et al. (2005) to a U.S.-level RUBMRIO model for trade patterns among the nation’s 
3,109 contiguous counties (excluding Hawaii and Alaska), across 20 socio-economic sectors, and 
two transportation modes. The applications anticipated trade and location choices resulting from a 
variety of scenarios, including changes in export demands and transport cost. A series of scenarios 
were carried out by changing the export demands in each of the 12 export-related sectors to forecast 
the effects of different export demands on the U.S. economy. Highway congestion effects and 
transport cost effects on U.S. trade and production patterns were illustrated by a rise or fall in IH40 
travel times and the marginal average cost of trucking.

In these studies, they mainly focused on how the effects of inputs (e.g., export demands of 
different commodities, the transport cost, and network congestion) and parameters (e.g., technical 
coefficient) on outputs, such as the distribution of trade flows and production. Additionally, they 
only demonstrated the individual effect of every input on the outputs. In fact, the interaction effects 
across inputs may amplify or dampen individual effects of inputs on outputs in complex and dynamic 
urban systems.

Thus, we used the local sensitivity analysis with interaction (LSAI) to evaluate the RUBMRIO 
model by producing finite change sensitivity indices for the variation of inputs under different 
scenarios. This feature is particularly appealing when the set of uncertain variables is especially large 
since this procedure requires a relatively low number of model runs. This paper illustrates how the 
local sensitivity analysis applies to the case of scenarios in transport and land use models through an 
analysis of the RUBMRIO model, which simulates not only the individual effect of each input but 
also all inputs’ interaction effects. In this study, a RUBMRIO model is developed for trade patterns 
among the 3,109 contiguous counties from the continental U.S. across 12 socio-economic sectors 
and two transportation modes (truck and rail). The following two scenarios are used: simultaneously 
increasing all foreign export demands (ED), transport costs (TC), and travel times (TT) between 
counties (or from counties to export zones) by 20% as Scenario 1, and simultaneously decreasing 
all ED, TC, and TT by 20% as Scenario 2. Applications of the model anticipate changes (including 
individual effects and interaction effects) of domestic trade flow, export trade flow, production (sum 
of domestic and export trade flows), and consumption in the continental U.S. resulting from two 
scenarios. Thus, these scenarios include increasing or decreasing ED, TC, and TT between counties 
(or from counties to export zones) by 20% in order to forecast their effects on key metrics of the U.S. 
economy (including production, consumption, and domestic trade flows in continental U.S. States).

BRIEF INTRODUCTION TO THE RUBMRIO MODEL

RUBMRIO is a transportation-economic model that simulates the flow of goods, labor, and vehicles 
across a multiregional area (see Figure 1, and Du and Kockelman [2012]). RUBMRIO simulates 
trade across zones of a region, as motivated by foreign and domestic ED, and computes this trade 
within numerous economic sectors. IO relationships/tables are used to anticipate consumption needs 
of commodity producers, and multinomial logit models distribute commodity flows across origin 
zones and shipment modes.
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Figure 1: RUBMRIO Structure and Solution Algorithm
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The Utility of Trade Choices

The application of the random utility theory for cost minimization, domestic trade flows (among 
counties, as zones) and export flows (from counties to export zones) is based on the utility of 
purchasing commodity m from zone j and transporting it via different transportation modes (export 
it to zone k). The utility function is composed of two items, including the price of the commodity, as 
well as travel time and cost attributes between zones (rather than distance), as shown in Equations 
(1) and (2).
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series of industry-specific nested logit specifications as described by Ben-Akiva and Lerman (1985).

Production Function

Sales price is a key factor influencing consumption of a commodity, purchase choices, production 
costs, and thus, trade patterns. In the RUBMRIO model, sales price (the cost of producing one unit 
of commodity n in zone j) depends on the costs of purchasing raw materials, labor, and necessary 
services from other producers, including transport costs associated with the shipment of those 
inputs. The ultimate sales price of commodity by industry n from zone j is as follows:
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where mn

ja0  is the technical coefficient for producing commodity n in zone j. mn
ja0  means the dollar 

values of commodity m required to produce one unit of commodity n in zone j. Thus, they are all 
dimensionless because their units are in terms of dollar-per-dollar.

They can be calculated through a transactions table (input-output matrix of dollar flows between 
industries) by dividing each m, n cell’s transaction by its corresponding column totally from the 
original IMPLAN transactions tables (Minnesota IMPLAN Group 1997) for total purchases, both 
local and imported. 

The input costs m
jc , shown in Equation (4), are a flow-weighted average of purchase price 

for commodity m in zone j and transport costs for commodity m from zone i to zone j (in units of 
disutility). The weights are domestic trade flows, m

ijX .
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Trade Flows

Domestic and export trade flows are calculated under an assumption of utility-maximizing/cost-
minimizing behavior, which means consumers will choose producer(s) that can supply the lowest 
cost (including both the price and the transport cost) in order to maximize their utility and (or)
minimize their costs. The unobserved heterogeneity of this choice, across producers and consumers, 
introduces the random elements, which leads to a nested logit model for origin and mode choices. 
The domestic trade flow, m

ijX , and export trade flow, m
ikY , are computed using Equations (5) and (6):
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(5)	

(6)	

where 
m

kY is the demand of export zone k for commodity m, and m
jc is the total (dollar) amount of 

commodity m consumed in zone j, which can be obtained as follows:

(7)    

Here, mn
ja

 
represents “local-purchase” technical coefficient for commodity m in zone j. Regional 

purchase coefficients (RPCs) bridge these two styles of technical coefficient matrices by representing 
the proportion of total demand for a commodity that is supplied by producers within the study area, 
rather than imported from abroad (MIG 2011). This relationship between  mn

ja0  and mn
ja  is shown in 

Equation (8). Finally, m
ix  is the total production of commodity m in zone i, which is the sum of 

domestic and export flows “leaving” zone i, as shown in Equation (9).

(8)   

(9)  

Equations (1) through (9) constitute the majority of the RUBMRIO model, and they are solved 
iteratively to achieve an equilibrium trade pattern, as described by Zhao and Kockelman (2004), 
who examined the existence and uniqueness of the equilibrium solution. After inputting foreign 
export demand, highway distances and railway distances between zones, highway distances and 
railway distances to export, and transport cost between zones and to export, the iteration procedure 
begins with initial sales prices and the domestic trade flow at zero. The relative utilities of both 
domestic and export origin and mode choices are computed. Then, export demands are distributed 
among production zones to export according to the relative utilities. These export flows give rise 
to domestic demands and trade flows between counties on the basis of relative utilities. The total 
productions in zone i are multiplied by corresponding technical coefficients (following import/
leakage considerations) in order to estimate the total consumption (set of inputs) required for 
purchase from domestic counties j (including zone i itself). Average input costs are computed as 
a flow-weighted average of utilities, and coupled with original technical coefficients to provide 
updated sales prices, which provide feedback for recalculating of all purchase utilities. This process 
leads to new iterations, until consecutive trade flows stabilize, achieving system equilibrium.

LOCAL SENSITIVITY ANALYSIS WITH INTERACTION (LSAI)

While building and using numerical simulation models, sensitivity analysis is an invaluable tool to 
study how uncertainty in the output of a mathematical model or system is apportioned to different 
sources of uncertainty in its inputs (Saltelli et al. 2008). Local sensitivity analysis is the assessment 
of the local impact of input factors’ variation on model response by concentrating on the sensitivity 
in the vicinity of a set of input factors. Such sensitivity is often evaluated through gradients or partial 
derivatives of the output functions at these input factors, thus other inputs are held constant when 
studying the local sensitivity of a specific input. Such approaches have been used in evaluating large 
environmental systems, including climate modeling, oceanography, and hydrology (Cacuci 2003, 
Castaings et al. 2007). Borgonovo et al. (2014) used Gravity-based Land Use Model (G-LUM) by 
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Kockelman et al. (2008) to illustrate LSAI techniques and found that the outputs respond almost 
additively to variations in the model inputs over the given scenarios. Changes in the base year 
employment assumptions strongly influence future job and land use pattern predictions.

Here, the following mathematical model is used to denote the input-output mapping: 

(10)	 	
 

where y is the output,  is the vector of the inputs. l is the number of 
(groups of) inputs. Therefore, y0 = f (x0) the base-case output of the simulation can be obtained 
by the simulation with inputs to a base-case scenario, x0. Furthermore, the analyst can know the 
response of the inputs in each scenario by obtaining different outputs ys = f (xs)(s = 1,2,···,S) (through 
simulating the alternative scenarios. However, he/she has no information about the sources of change 
(Borgonovo et al. 2014). The analyst also cannot distinguish both the importance of each input and 
their individual and interaction effects on the output. Recent works have addressed those problems 
through the concept of sensitivity analysis setting (Borgonovo et al. 2014). 

To identify the relative importance of changes in single input or of interactions between inputs, 
we can use the following complete decomposition of any finite change in f (x) (Saltelli and Tarantola 
2002; Saltelli et al. 2004; Borgonovo et al. 2014):

(11)	

with

(12) 

and where  denotes that the th element of the x vector, is set at the value it assumes in 
Scenario 1, while all other variables are at their Scenario 0 values. Thus, the change induced by the 
change of the inputs can be decomposed into individual effects and interaction effects of inputs.  
Based on such decomposition, finite-change sensitivity indices can be computed as follows:

(13)	

where  k1, k2, ···, kr denotes a group of r indices (r≤l) and  is the portion of  due to the 
interaction of inputs corresponding to the selected indices.

Particularly, the first-order finite-change sensitivity indices are  and 
the total-order indices of xki are  where   is the total 
contribution of xki  to Δy, and is the sum of the individual contribution of  xki, plus all the contributions 
due to the interaction of xki with the remaining inputs. Thus, the index  represents the 
interaction effects associated with xki (Borgonovo et al. 2014).

As discussed in the literature (Saltelli and Tarantola 2002; Saltelli et al. 2004), the sign of 
the first-order indices ( ) is the sign change in y due to the individual change in xki. The sign of  

 is the sign of the interaction effects between the inputs xk1, xk2, and xk3. The total-order 
indices ( ) are the appropriate sensitivity measures, since they deliver not only the individual 
importance of the inputs, but also account for interaction effects. The magnitudes of   
provide the natural sensitivity measures.

SENSITIVITY ANALYSIS OF THE RUBMRIO MODEL

In this section, the RUBMRIO model is used to anticipate changes of domestic trade flow, export 
trade flow, production, and consumption in the continental U.S. resulting from two scenarios: 
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simultaneously increasing and decreasing ED, TC, and TT by 20%. First, the data acquisition and 
parameters estimates are introduced. Then, the two scenarios are considered through analyzing 
sensitivity indices and total-order indices. In this sensitivity analysis, one can obtain both individual 
effects of each input and their interactions’ effects. This reflects whether interaction effects across 
inputs amplify or dampen individual effects. 

DATA ACQUISITION

The primary data source is the U.S. Department of Transportation’s Freight Analysis Framework 
version 3 (FAF3) database of networks and flows between FAF regions (FAF 2007). FAF integrates 
data from a variety of sources to create a comprehensive picture of freight movement among states 
and major metropolitan areas by all modes of transport. With data from the U.S. 2007 Commodity 
Flow Survey and other sources, FAF3 provides estimates for tonnage and value by commodity type, 
mode, origin, and destination for year 2007 flows. FAF3’s origin-destination-commodity-mode 
(ODCM) annual freight flows matrix was used to estimate RUBMRIO’s nested logit model’s origin 
and mode choice parameters, to calculate all export demands (by port and industry), and evaluate 
RUBMRIO model predictions. Commodities are classified at the 2-digit level of the Standard 
Classification of Transported Goods (SCTG) http://www.statcan.gc.ca/eng/subjects/standard/
sctg/sctgclass, and were aggregated to the closest 12 economic sectors, according to the codes 
with a complete description of these categories and their constituent parts shown in Table 1 with 
corresponding IMPLAN Code and NAICS Code. 

Table 1: Description of Economic Sectors in RUBMRIO Model

Sector Description SCTG Code IMPLAN 
Code

NAICS 
Code

1 Agriculture, Forestry, Fishing and Hunting 1 1~19 11

2 Food, Beverage and Tobacco Product 
Manufacturing 2~9 41~74 311, 312

3 Mining 10~15 20~30 21

4 Petroleum and Coal Product 
Manufacturing 16~19 115~119 324

5 Chemicals, Plastics and Rubber Product 
Manufacturing 20~24 120~152 325, 326

6 Other Durable & Non-Durable 
Manufacturing 25~31, 39

75~114, 
153~169, 
295~304

313~316, 
321~323, 
327, 337

7 Primary Metal Manufacturing 32 170~180 331
8 Fabricated Metal Manufacturing 33 181~202 332
9 Machinery Manufacturing 34 203~233 333

10 Computer, Electronic Product and 
Electrical Equipment Manufacturing 35, 38 234~275 334, 335

11 Transportation Equipment Manufacturing 36, 37 276~294 336
12 Miscellaneous Manufacturing 40, 41, 43 305~318 339

FAF3 flows are also broken down by eight modes of transportation including truck, rail, water, air, 
multiple modes and mail, pipeline, other and unknown, no domestic mode. See http://faf.ornl.gov/
fafweb/Data/FAF3ODCMOverview.pdf for more details about these mode and commodity classes. 
Considering that truck and rail modes carry 40.1% and 40.2%, respectively, of the U.S.’s 3,344 
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billion ton-miles of traded commodities according to the 2007 Commodity Flow Survey (http://
www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flow_survey/final_tables_
december_2009/html/table_01b.html), the RUBMRIO model used here includes just two modes 
- truck and rail. All other modes are excluded. Travel times and costs between counties (and from 
counties to export zones) were computed for the county-to-county matrix based on shortest-path 
distances over TransCAD’s highway and railway network models. See https://www.census.gov/geo/
reference/codes/cou.html for details about the 3,109 counties from the continental U.S.

Estimation of Parameters

As introduced in Equations (1) and (2), parameters λm, and βm reflect producers’ and shippers’ 
attraction to an origin zone’s size and sensitivity to travel times and costs of the two alternative 
modes (highway and railway) for each commodity m. To estimate such parameters for the nested 
logit model structure (with lower level for mode choice and upper level for origin choice), FAF3’s 
dollar values of freight flows between 120 domestic zones were used for the 12 economic sectors (as 
shown in Table 1). Each FAF record was used as a data point or “observation,” and its dollar value 
used as the “weight” factor in the logit’s log-likelihood function. In the lower layer of the nested 
logit model, mode choices were first estimated for each of the 12 sectors. Travel times and costs 
between counties (and from counties to export zones) are computed based on shortest-path distances 
over TransCAD’s highway and railway networks. For sector m, the probability of choosing transport 
mode t between origin i and destination j is as follows:
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In the upper layer, the probability of a producer in zone i choosing commodity m from firms in 
zone j is:
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ijV  is the expected maximum utility across mode alternatives plus the origin-size 

attractiveness term, shown as follows:
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Table 2 shows all parameter estimates for the origin and mode choice models by sector (Du 
and Kockelman 2012).The correlated nature of cost and time variables, and use of assumed (rather 
than actual) results, is presumably causing the negative coefficient estimates for several sectors. 
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Table 2: Estimated Parameters for Nested Logit Models of Origin and Mode Choice

Sector
Origin Choice Parameters Mode Choice Parameters

λm ρ2 (Rho-Square) ρ2 (Rho-Square)

1 0.448 0.403 5.640 -4.010 -4.040 0.999
2 -1.430 0.242 5.600 1.810 0.464 0.772
3 -3.830 0.262 1.850 0.857 0.0761 0.109
4 1.010 0.493 1.670 -1.560 -3.410 0.755
5 0.801 0.206 1.420 -1.010 -1.120 0.486
6 1.090 0.081 5.540 1.540 0.575 0.562
7 1.690 0.130 1.430 -0.823 -1.280 0.817
8 0.173 0.16 3.180 -0.478 -0.741 0.936
9 0.339 0.224 -3.610 -8.500 -6.980 0.934
10 0.097 0.288 -1.590 -6.000 -4.160 0.613
11 -0.840 0.130 -3.470 -6.090 -5.270 0.825
12 0.805 0.272 2.830 -1.900 -1.960 0.926

Technical coefficients αmn reflect production technology within counties and are very important 
parameters in the RUBMRIO model. In this study, the technical coefficients are assumed to be stable 
due to only considering the situation in the short run. Therefore, they are exogenous to the model, 
based on IMPLAN’s transaction tables derived from U.S. inter-industry accounts and estimate the 
values of purchases at finer levels of resolution. RPCs describe the proportion of local demand 
for a commodity that is purchased from local producers. Here, a constant RPC value was used 
in all counties. These RPCs are generated by IMPLAN automatically, using a set of econometric 
equations (MIG 2001).

Sensitivity Analysis of RUBMRIOModel viaTwo Senarios

This section describes the scenario decomposition applied to RUBMRIO. The 3,109 counties come 
from the continental U.S. states, as shown in Table 3.

RUBMRIO’s three major inputs are as follows:
a)	 Foreign Export Demand (ED): the foreign export flows via 106 export zones, across 12 

economic sectors. ED is assumed to be the only source of final demand, which must be satisfied 
by the U.S. counties. 

b)	 Transport Costs (TC): travel costs between each pair of counties (or from counties to export 
zones). We vary travel costs between each pair of counties.TC is the key component of most any 
trade model, and can rise or fall relatively quickly in response to changing energy prices, labor 
costs, shipping regulations, and interest rates (which affect the real price of vehicle capital). 

c)	 Travel Times (TT): the travel time between each pair of counties (or from counties to export 
zones). As a key component of the utility functions, transport time affects trade flow patterns, 
local production, and consumption. 
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Table 3: Continental U.S. States and Counties

No. State Abbr. # 
Counties No. State Abbr. # 

Counties
1 Alabama AL 67 26 Nebraska NE 93
2 Arizona AZ 15 27 Nevada NV 17
3 Arkansas AR 75 28 New Hampshire NH 10

4 California CA 58 29 New Jersey NJ 21

5 Colorado CO 64 30 New Mexico NM 33
6 Connecticut CT 8 31 New York NY 62
7 Delaware DE 3 32 North Carolina NC 100

8 District of 
Columbia DC 1 33 North Dakota ND 53

9 Florida FL 67 34 Ohio OH 88
10 Georgia GA 159 35 Oklahoma OK 77
11 Idaho ID 44 36 Oregon OR 36
12 Illinois IL 102 37 Pennsylvania PA 67
13 Indiana IN 92 38 Rhode Island RI 5
14 Iowa IA 99 39 South Carolina SC 46
15 Kansas KS 105 40 South Dakota SD 66
16 Kentucky KY 120 41 Tennessee TN 95
17 Louisiana LA 64 42 Texas TX 254
18 Maine ME 14 43 Utah UT 29
19 Maryland MD 26 44 Vermont VT 14
20 Massachusetts MA 14 45 Virginia VA 134
21 Michigan MI 83 46 Washington WA 39
22 Minnesota MN 87 47 West Virginia WV 55
23 Mississippi MS 82 48 Wisconsin WI 72
24 Missouri MO 115 49 Wyoming WY 23

25 Montana MT 56 Total No.  
of counties 3109

The base case scenario used here, x0 = (ED0, TC0, TT0), is based on data used in Du and 
Kockelman (2012). The RUBMRIO model is used to examine the different scenarios’ effects on the 
distributions of trade flows and production by simulating those alternative scenarios, after first 
changing ED in each of the 12 export-related sectors, changing Interstate Highway (IH) 40’s TT by 
10%, and changing the marginal average time of trucking by 20% up and then down, each factor one 
at a time (Du and Kockelman 2012). In this paper, one can consider the two distinctive scenarios x1= 
(ED1, TC1, TT1) (simultaneously increasing ED, TC, and TT by 20%) and x2 = (ED2, TC2, TT2) 
(simultaneously decreasing ED, TC, and TT by 20%). Therefore, the change of each model output 
resulted from x0 to x1 (or x2) can be decomposed into eight terms, which account for the individual 
effect in ED, TC, and TT, their interaction effects in pairs, and in the residual term that contains their 
overall and residual interaction. Thus, the following sensitivity indices can be obtained:  
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 and total-order indices
 

(18)	

Simultaneously increasing (or decreasing) ED, and TC and TT by 20% will have different 
first-order effects, interaction effects and total-order effects on domestic trade flow (D), export trade 
flow (E), production (P) and consumption (C) in counties, where production is the sum of D and 
E. To obtain each state’s overall effect estimate, we summed all county-level effects across each 
continental U.S. state. Hence, we record 20 states with the largest increase and decrease of effects 
on domestic trade flows in these two scenarios in Tables 4 through 9. This paper records 10 states 
with largest and smallest changes in domestic trade flows by the first-order and total-order effects of 
ED, because ED has the same sign with different magnitude of first-order and total-order effects on 
domestic trade flows, production, and consumption in every state under each scenario. Apart from 
the first-order and total-order effects of ED, other effects on the domestic trade flows may be negative 
and positive in different states under each scenario. This paper records 10 states with negative and 
positive changes (where five states with largest and five states with smallest) in domestic trade flows 
by the first-order and total-order effects of TC and TT, and interaction effects under each scenario.

Table 4: Scenario 1’s First-order Effects
The First-order effects of ED The First-order effects of TC The First-order effects of TT

D($) E($) C($) D($) E($) C($) D($) E($) C($)

DC 165 47 188 VA -114148 4350 -103268 VA -96449 6419 -84894

DE 2720 415 2796 KY -56319 -2178 -54369 KY -34360 -638 -31778

RI 6491 1085 6778 NC -55806 -447 -54591 NC -31924 1389 -28722

NH 10622 958 10679 GA -50009 -1578 -48141 GA -29637 132 -28313

MA 15350 1922 15627 KS -47976 -2208 -45821 FL -4224 443 -3873

ME 17331 2197 17645 WI -2548 -144 -3194 RI -1579 3 -1378

NV 18431 1639 18535 VT -1886 -48 -1810 DE -1448 -2 -1319

CT 22510 3730 23124 RI -1822 55 -1688 ME -1232 129 -1237

OR 25721 3222 26286 DE -1444 8 -1363 MD -980 272 -1017

VT 30841 4628 32302 DC -98 -2 -94 DC -94 1 -84

MI 172770 18397 172500 NH 3051 -14 2803 MA 24 185 7

AL 180749 11601 181083 NV 4506 -106 4155 NM 897 382 823

NC 183067 28791 188548 MO 4830 -1730 539 NJ 907 539 1793

NY 195666 22995 199699 AL 8081 844 10089 MS 1041 -396 1177

MO 281036 24862 272145 AZ 8688 -77 8595 PA 2064 1945 2052

CA 342043 9666 331227 AR 28212 -616 26441 WY 48815 1073 46891

NE 350462 9918 338926 WY 43631 383 42526 AR 53090 310 51705

CO 356807 12362 351349 CO 103650 -731 108186 CA 112864 -266 109555

TX 385618 56409 401756 CA 112217 -1837 109769 CO 174080 1289 172090

VA 630612 79390 646597 NE 137043 -1023 137523 NE 174540 212 163210

Note: Simultaneously increasing all ED, TC and TT by 20% as Scenario 1. 
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The first-order effects of ED are positive on all of these outputs. That is to say, an increase in ED 
corresponds to an increase in domestic trade flows, export trade flows, production, and consumption. 
Table 4 reports the 20 states with the largest and smallest changes in domestic trade flows by the 
first-order effects of ED. Table 4 shows ED has the strongest first-order effects on VA’s domestic 
trade flows, export trade flows, production, and consumption. Increases in TX’s domestic and export 
trade flows, production, and consumption resulting from a 20% increase in ED are almost half of the 
increase in VA’s, although TX exhibits the second strongest first-order ED effects. At the same time, 
ED has almost no first-order effects on the small region/district of DC (with predicted changes in 
domestic trade flows, export trade flows, production, and consumption of just $165, $47, $212, and 
$188, respectively). Compared with DC, DE (a very small state) exhibits the second weakest ED 
effects (with values of $2,720, $415, $3,136, and $2,796, respectively).

As opposed to ED, TC and TT have positive or negative effects on domestic and export trade 
flows, production, and consumption in different states under Scenario 1. Table 4 displays five 
states with both negative and positive changes in domestic trade flows via TC’s and TT’s first-
order effects. VA suffers the strongest negative effects to its domestic trade flows (falling $114,148) 
when increasing TC by 20%, but with VA’s export trade flows predicted to rise by $4,350 (the 
most of any shown state). KY, NC, and GA follow VA in decreasing order of domestic trade flow 
impacts: -$56,319, -$55,806, and -$50,009, respectively. VA, KY, NC, and GA exhibit the strongest 
negative effects on their production and consumption due to increasing TC by 20%.  However, 
among states with increasing domestic trade flows, NE, CA, and CO exhibit the biggest increase of 
domestic trade flows, with values of $137,043, $112,217, and $103,650, respectively. TC also has 
the strongest positive effect on their production and consumption although their export trade flows 
decrease because of increasing TC. Increasing TC has almost null (positive or negative) effects 
on export trade flows in DC, DE, NH, and VT because the (negative or positive) changes of their 
export trade flows are less than $50. TT has the strongest negative effects on VA’s domestic trade 
flows, decreasing by $96,449 compared with $34,360 (the second decreasing of export trade flows 
in KY) and has the strongest positive effects on export trade flows in VA, increasing by $6,419. VA, 
KY, NC, and GA have the strongest negative effect on their production and consumption due to 
increasing TT by 20%. However, when increasing TT by 20%, CO, NE, and CA obtain the biggest 
increase of domestic trade flows, production, and consumption although CA’s export trade flow 
decreases by $266 because of increasing TT. Increasing TT has almost null (positive or negative) 
effects on export trade flows in DC, DE, and RI because the (negative or positive) changes of their 
export trade flows are less than $5.

To sum up, TC or TT have the same sign with different magnitude of first-order effect on 
domestic trade flows, production and consumption in VA, KY, NC, GA, CO, NE, and CA. ED is the 
most influential factor on all outputs compared with TC and TT. In some states, increasing TC and 
TT have completely opposite effects on domestic trade flows, export trade flows, production, and 
consumption.

The interaction effects for domestic trade flows can be negative or positive across different 
states.  Table 5 shows 10 states with both negative and positive changes (five states with largest 
and five states with smallest) in domestic trade flows for Scenario 1’s interaction effects. Table 5 
shows that all four types of interaction effects (ED&TC, ED&TT, TC&TT, ED&TC&TT) are most 
strongly negative in the case of Virginia’s (VA’s) domestic trade flows and consumption, with values 
of $22,830 and -$20,654 (for ED&TC effects on domestic flows and consumption), -$19,290 and 
-$16,979 (for ED&TT effects), -$106,322 and -$104440 (for TC&TT effects), and -$21,264 and 
-$20,888 (for ED&TC&TT effects). In other words, VA is estimated to experience the largest losses 
of domestic trade flows and consumption when ED, TC, and TT are all increased together by 20%. 
However, ED&TC and ED&TT have the biggest positive interaction effects on VA’s export trade 
flows, with values of $870 and $1,284, while TC&TT and ED&TC&TT are anticipated to have 
the greatest negative interaction effects (of -$3,633 and -$727, respectively) on VA’s export trade 
flows. Thus, increasing ED and TC, combined with ED and TT, will lead to the biggest increase of 
VA’s export trade flows while increasing TC and TT, combined with ED, TC, and TT will induce 
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the biggest decrease of VA’s export trade flows. KY, NC, GA, and KS are the next four states that 
follow VA in terms of domestic trade flow losses and consumption reductions, thanks to the negative 
interaction effects between ED and TC, as well as interaction effects between ED and TT.

The states of AL, KY, WI, and NC are expected to follow VA in terms of lowered domestic 
trade flows and consumption due to the negative interaction effects between TC and TT, as well 
as interaction effects among ED, TC, and TT. VA and AL are expected to experience the greatest 
negative interaction effects on domestic trade flows, production and consumption, when TC and TT 
rise together and/or ED, TC, and TT rise together. However, VA’s changes in domestic trade flows, 
production, and consumption more than double those of AL.  NE, CA, and CO are estimated to 
experience the greatest increases in domestic trade flows, including production and consumption 
values over $20,000, although their export trade flows are expected to fall under interaction effects 
between ED and TC. The interaction effects between ED and TT also trigger the greatest increases 
in domestic trade flows, including production and consumption values over $20,000 in NE, CO, 
and CA. However, CA’s export trade flows are nearly unchanged, falling by just $53, while NE’s 
and CO’s export trade flows are projected to rise by $42 and $258, because of  interaction effects 
between ED and TT. CO, TX, and MT are predicted to experience the greatest increases in domestic 
trade flows, as well as production and consumption, and their export trade flows also rise, thanks to 
interaction effects between ED and TC, and among ED, TC, and TT. Essentially, trade, production 
and consumption are able to shift in a variety of ways across a set of networked states and regions; 
so it is valuable to have a model like RUBMRIO to anticipate those movements and techniques like 
LSAI to appreciate the sources of variations in model outputs.

The negative or positive changes of domestic trade flows in other states are all less than $9,000. 
Interactions between ED and TC have negligible (under $100) effects on export trade flows in 10 of 
the above 20 states. Thirteen of the 20 states exhibit negligible export-flow change from interactions 
effects between ED and TT. Six of the 20 states have negligible changes in export flows when TC 
and TT interactions are considered, and 15 have negligible export-flow effects from interactions 
across ED, TC, and TT. Meaningfully, domestic trade flow effects from interactions between TC and 
TT and among ED, TC, and TT all share the same signs/direction, but with different magnitudes, in 
each of the 20 states.

Table 6 shows the total-order effects of ED, TC, and TT on domestic and export trade flows 
and consumption in the 20 continental U.S. states listed. Similar to ED’s first-order effects, ED’s 
total-order effects are all positive on these outputs in all states - and ED is expected to have the 
strongest total-order effect on VA’s domestic trade flows, export trade flows, and consumption. 
However, in VA, ED’s total-order effects are less than its first-order effects on domestic trade flows 
and consumption. TX exhibits the second strongest total-order effects for ED on export trade flows 
and production (when summing domestic and export trade flows), and ED has its next-strongest 
total-order effects on domestic trade flow and consumption in CO. DC and DE, as very small 
regions, exhibit the weakest total-order effects of ED on domestic trade flows, export trade flows, 
and consumption.

The strongest negative total-order effects of TC on domestic trade flows and consumption 
happen in VA, although the total-order effects of TC on export trade flows is positive. KY, NC, 
and GA follow VA in negative total-order effects of TC on domestic trade flows and consumption 
with negative total-order effects of TC on export trade flows. NE, CO, and CA have the strongest 
total-order effects of TC on domestic trade flows and consumption while the total-order effects 
of TC on export trade flows is positive in CO and are negative in CA and NE. TC has almost 
null (positive or negative) total-order effects on export trade flows in DC, DE, MA, ME, NH, NV, 
and RI because the (negative or positive) changes of their export trade flows are less than $100. 
The largest decrease resulted from the total-order effect of TT on the domestic trade flows and 
consumption also happen in VA, which is the same as the first-order effect of TT. However, AL 
has the second strongest total-order effects of TT on its domestic trade flows and consumption 
(-$71,297 and -$70,464, respectively), while its export trade flows increase by $1,140. CO and NE 
have the strongest positive total-order effects of TT on their domestic trade flows and consumptions 
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with values over $200,000. The biggest increase of export trade flows happens in TX with $10,611 
compared with $3,343, which is the second largest increase of export trade flows in VA.  TT has 
almost null (positive or negative) total-order effects on export trade flows in DC and TN because the 
(negative or positive) changes of their export trade flows are less than $100.

Table 6: Scenario 1’s Total-order Effects
Total-order Effects of ED Total-order Effects of TC Total-order Effects of TT

D($) E($) C($) D($) E($) C($) D($) E($) C($)

DC 119 48 147 VA -264564 860 -249249 VA -243325 3343 -227200

DE 2089 417 2216 KY -93706 -3039 -88494 AL -71297 1140 -70464

RI 5665 1080 6015 NC -79852 -1055 -77619 KY -67356 -1191 -61384

NH 12351 981 12311 GA -61781 -1355 -58511 NC -51195 1148 -46576

MA 14767 1972 15060 KS -58686 -2624 -55517 GA -37334 697 -34718

ME 16225 2222 16565 ME -5154 -5 -4996 MN -1980 974 -1592

CT 20017 3858 20788 MA -3527 75 -3407 UT -1373 1353 -308

NV 21280 1642 21215 RI -3062 -30 -2920 ME -1313 333 -1265

OR 24644 3160 25234 DE -2053 11 -1899 MD -804 581 -850

MD 30683 3707 30929 DC -161 6 -147 DC -157 10 -136

NC 163373 28893 169867 VT 64 398 286 TN 179 -51 2922

MI 169966 18289 168884 NJ 1056 401 -29 MS 886 -410 1402

AL 170482 11960 171357 NH 3605 22 3343 PA 1119 2503 721

NY 195670 22928 200108 SD 6316 -890 4729 OR 1771 181 1868

MO 287785 24902 279430 NV 7340 -76 6855 MA 1777 357 1627

CA 386015 9355 374455 MT 53423 -118 56128 TX 69602 10611 68913

TX 388125 57750 403958 AR 57480 -502 54530 AR 87333 610 84848

NE 414246 9848 400944 CA 128398 -1547 127903 CA 129173 338 127646

CO 417258 12734 413252 CO 153808 687 164912 NE 218249 805 207077

VA 567228 80817 588077 NE 173254 -677 176253 CO 238323 3111 241597

Note: Simultaneously increasing all ED, TC and TT by 20% as Scenario 1. 

As shown in Table 7, the first-order effects of ED are negative on all of these outputs. In 
other words, a decrease in ED leads to reductions in domestic trade flows, export trade flows, and 
consumption, as expected. Table 7 reports the 20 states with the largest and smallest changes in 
domestic trade flows, via ED’s first-order effects. Table 4 shows ED’s strongest first-order effects 
are on VA’s domestic trade flows, export trade flows, and consumption. TX, CO, NE, and CA follow, 
with domestic trade flow and consumption losses all below-$300,000 and export trade flows losses 
below-$9,000. 

Different from ED’s rather consistently directed effects, TC and TT changes lead to a variety 
of changes in domestic and export trade flows, production, and consumption across different 
states, under Scenario 2. ED is the most influential factor, overall, but TC and TT lie directly in the 
transportation infrastructure and operations domains, so they are of great interest to transportation 
policymakers and system managers. Table 7 reports five states with both negative and positive 
changes in domestic trade flows due to TC’s and TT’s first-order effects. NE is estimated/predicted 
to exhibit the greatest losses in domestic trade flows and consumption when TC or TT fall (by 20%), 
yet negligible export trade flow effects (just -$85). CO and CA are next in terms of domestic trade 
flow and consumption losses, from TC or TT’s first-order effects. Consistent with other evaluations, 
discussed above, TC’s and TT show the strongest positive first-order effects on VA’s domestic trade 
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flows and consumption, with TX coming in second for TC’s effects and GA coming in second for 
TT’s first-order effects on domestic trade flow and consumption.

Table 7: Scenario 2’s First-order Effects
First-order effects of ED First-order effects of TC First-order effects of TT

D($) E($) C($) D($) E($) C($) D($) E($) C($)

VA -630612 -79390 -646597 NE -193528 693 -190871 NE -176883 -85 -170565

TX -385618 -56409 -401756 CO -156550 430 -159040 CO -152806 -694 -154252

CO -356807 -12362 -351349 CA -149633 1495 -144509 CA -109540 392 -107205

NE -350462 -9918 -338926 MT -78084 124 -78060 MO -63347 -2138 -64246

CA -342043 -9666 -331227 WY -60586 -1086 -59035 WY -60095 -1638 -58918

MO -281036 -24862 -272145 WV -8536 -752 -6147 NY -6441 -1330 -8525

NY -195666 -22995 -199699 MS -7775 90 -6173 NH -4746 -105 -4569

NC -183067 -28791 -188548 WA -7460 -3017 -9239 NJ -4651 -887 -4898

AL -180749 -11601 -181083 NV -5820 14 -5489 OR -2322 -63 -2238

MI -172770 -18397 -172500 NH -4022 -66 -3816 PA -337 -1866 -476

VT -30841 -4628 -32302 DC 109 -1 103 MA 47 -205 17

OR -25721 -3222 -26286 NJ 480 -236 941 RI 58 -147 -146

CT -22510 -3730 -23124 DE 1257 -47 1179 DC 92 -2 84

NV -18431 -1639 -18535 RI 1656 -118 1395 DE 640 -78 561

ME -17331 -2197 -17645 VT 1770 -78 1506 MD 1382 -385 1218

MA -15350 -1922 -15627 NC 57664 -1519 54104 ID 35861 1012 34357

NH -10622 -958 -10679 GA 61866 823 58839 TX 36517 -1689 28745

RI -6491 -1085 -6778 KY 64426 1406 61551 IN 36729 718 34628

DE -2720 -415 -2796 TX 69416 349 63565 GA 49358 -184 46525

DC -165 -47 -188 VA 83199 -8727 69003 VA 71359 -9414 55997

Note: Simultaneously decreasing all ED, TC and TT by 20% as Scenario 2. 

Lower TC is predicted to have negligible effects on export trade flows in DC, DE, MS, NH, 
NV, and VT, with associated values of -$1, -$47, $90, -$66, $14, and -$78, respectively (all less than 
$100, in absolute terms). And lower TT values have almost no effect on export trade flows in DC, 
DE, NE, and OR (with values falling by $2, $78, $85, and $63, respectively) and on domestic trade 
flows in DC, MA, and RI (with values rising by $92, $47, and $58, respectively).

Domestic trade flow effects for each pair of ED, TC, and TT input assumptions, and across 
all three sets of inputs, vary in direction across different states.  Table 8 records five states with 
both negative and positive effects, for the largest and smallest changes in domestic trade flows by 
interaction effects under Scenario 2. Table 8 shows how interaction effects between each pair of ED, 
TC, and TT input assumptions are greatest for VA’s domestic trade flows and consumption (with 
values falling by $16,640 and $13,801, $14,272 and $11,119, and $46,465 and $42,591, respectively), 
while NE offers the biggest losses in domestic flows and consumption estimates (with values falling 
$8,565 and $8,874) as a result of the interaction effects among ED, TC, and TT. However, ED&TC, 
ED&TT, and TC&TT pairs have the biggest positive interaction effects on NE’s domestic flows 
and consumption (with values rising $38,706 and $38,174, $35,377 and $34,113, and $42,823 
and $44,372, respectively), while ED&TC&TT has the biggest positive interaction effects on VA’s 
domestic flows and consumption (with impacts of +$9,273 and +$8,518, respectively). TX follows 
VA in decreasing of domestic trade flows and consumption (with values -$13,883 and -$12,713), 
while CO follows NE in rising domestic trade flows and consumption (with values of +$31,310 
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and +$31,808) for interaction effects between ED and TC. However, ED and TC have almost no 
interaction effects (all less than $100, in magnitude) on TX (-$70), CO (-$86) and nine other states’ 
export trade flows (among the 20 shown here).  GA follows VA in decreasing of domestic trade 
flows and consumption (with values falling by $9,872 and $9,305), while CO follows NE in terms 
of rising domestic trade flows and consumption (with values of +$30,561 and +$30,850), thanks 
to interaction effects between ED and TT. However, ED and TT have almost no interaction effects 
(all less than $100, in magnitude) on GA ($37) and eight other states’ export trade flows (among 
the 20 shown here). AL follows VA in terms of falling domestic trade flows and consumption (with 
values of -$32,040 and -$31,924), while MT follows NE in increasing of domestic trade flows and 
consumption (with impacts of +$28,855 and +$30,146), thanks to interaction effects between TC 
and TT. However, TC and TT have almost no interaction effects (all less than $100, in magnitude) 
on six other states’ export trade flows (among the 20 shown here).  MT follows NE in decreasing of 
domestic trade flows and consumption (with values of -$5,771 and -$6,029), while AL follows VA 
in terms of rising domestic trade flows and consumption (with values of $6,408 and $6,385), via 
interaction effects among ED, TC, and TT.  However, ED, TC, and TT have almost no interaction 
effects (all less than $100, in magnitude) on MT (-$83), AL (-$60), and 12 other states’ export trade 
flows (among the 20 shown here).

  
Table 9: Scenario 2’s Total-order Effects

Total-order Effects of ED Total-order Effects of TC Total-order Effects of TT

D($) E($) C($) D($) E($) C($) D($) E($) C($)

VA -652,250 -75,875 -663,079 NE -120,564 964 -117,200 NE -107,248 341 -100,955

TX -403,399 -56,341 -417,233 CA -115,156 1,711 -110,605 CO -100,942 362 -100,054

CO -300,261 -12,538 -294,527 CO -103,937 1,261 -103,885 CA -83,082 830 -80,762

CA -291,346 -10,172 -282,135 AL -43,095 -532 -43,583 WY -39,460 -1,292 -38,744

NE -284,945 -10,142 -275,514 WY -39,853 -851 -38,837 MO -36,213 -1,232 -40,438

MO -261,872 -24,429 -253,519 AZ -12,022 48 -11,594 OR -1,285 0 -1,254

NY -197,639 -22,987 -200,875 WV -8,795 -696 -7,793 OH -1,246 -616 -2,121

NC -197,554 -28,075 -201,763 WA -8,395 -2,117 -9,444 RI -710 -178 -817

MI -168,017 -18,166 -168,415 NV -3,600 41 -3,386 SD -536 -127 -1,047

AL -167,425 -11,148 -167,334 NH -2,204 -24 -2,096 SC -503 -286 -794

AZ -28,613 -1,110 -27,859 DC 65 3 64 DC 52 2 48

OR -26,502 -3,281 -27,045 RI 569 -155 415 MA 179 -102 130

CT -24,865 -3,596 -25,301 DE 961 -10 909 MD 247 -175 201

ME -19,113 -2,225 -19,356 MS 1,899 452 2,873 DE 467 -34 415

NV -16,116 -1,631 -16,342 VT 2,421 33 2,187 NJ 803 -159 171

MA -16,032 -1,881 -16,251 KY 31,427 917 30,413 TX 15,590 -550 11,057

NH -9,122 -931 -9,241 GA 34,639 1,230 33,541 IN 18,033 652 17,182

RI -6,645 -1,016 -6,852 KS 36,850 1,014 34,507 ID 19,187 801 18,535

DE -3,089 -397 -3,136 NC 38,855 -885 36,464 VA 19,995 -7,079 10,725

DC -200 -47 -221 TX 41,909 1,080 38,913 GA 24,633 425 23,689

Note: Simultaneously decreasing all ED, TC and TT by 20% as Scenario 2. 

Table 9 shows the total-order effects of ED, TC, and TT on domestic and export trade flows, 
production, and consumption in the continental U.S. Similar to ED’s first-order effects, ED’s total-
order effects are negative on all states’ outputs when ED is lowered. In contrast, TC and TT have 
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much more complex total-order effects, moving in both negative and positive directions for domestic 
trade flows, export trade flows, production, and consumption across states.

Table 9 shows the total-order effects of ED, TC, and TT on domestic and export trade flows and 
consumption in the 20 continental U.S. states under Scenario 2. Similar to ED’s first-order effects, 
ED’s total-order effects are all negative on these outputs in all states, and ED’s strongest total-order 
effects are on VA’s domestic trade flows, export trade flows, and consumption. However, in VA, 
ED’s total-order effects are smaller than ED’s first-order effects were, on domestic trade flows and 
consumption, yet larger for export trade flow effects.

The strongest negative total-effects of TC and TT on domestic trade flows and consumption 
happen in NE, although the total-effects of TC and TT on export trade flows are positive.

By comparing the results under these two scenarios, one can conclude that first-order effects 
of ED are symmetric from the first-order of ED in Tables 4 and 7 because ED has the opposite 
signs of first-order effects with the same magnitudes on domestic trade flows, export trade flows, 
and consumption in 20 states. Other effects (excluding the first-order effects of ED) are not all 
symmetric, so the signs and/or magnitudes of the same effects under different scenarios differ across 
Tables 4 through 9. 

CONCLUSIONS AND EXTENSIONS

This paper uses the technique of LSAI to produce sensitivity indices for the variation of outputs, due 
to finite variations in model inputs to a complex model of production, consumption and trade flows 
across 3,109 U.S. counties. The work illustrates how LSAI applies to the RUBMRIO model of land 
use and transport, by simulating both the individual effect of every input and the interaction effects 
of inputs on outputs. More importantly, the work analyzes changes in production (via domestic trade 
flows and export demands) and consumption across the continental U.S.’s counties, tracking trade 
patterns among 12 socio-economic sectors and two freight modes (truck and rail).

LSAI offers a valuable set of relationships to enable policymakers, planners, and carriers to 
quickly predict trade flows by producers’ location choices and production levels. LSAI offers the 
individual effects of inputs and their interaction effects on many types of models’ outputs. LSAI 
enables analysts to clearly identify keydrivers for model predictions, and the magnitude and 
direction of changes in outputs, due to input changes and their interaction effects, which amplify or 
dampen individual effects of inputs.

Under scenarios developed here, LSAI techniques show how export demands (ED) are more 
important for accurately anticipating and quantifying U.S. trade flows than are transport costs and 
travel times (TC and TT). As expected, TC and TT effects typically carry the same sign or direction, 
with different magnitudes of first-order effect on domestic trade flows, production, and consumption 
in most states (e.g., KY by the first-order effects under Scenario 1). However, changes in TC and TT 
have opposing effects on outputs in some states. Tracking various inputs’ effects helps policymakers, 
businesses, and carriers pursue more optimal policies, operations, and investments.

This type of LSAI investigation can be extended by varying EDs in each market/industry sector, 
and varying transport cost and travel time (TC and TT) values by route, link, and mode. The number 
of required simulations for LSAI application rise exponentially with the number of variable inputs 
and parameters, if one wishes to compute all interaction effects. Thus, the standard approach of many 
Monte Carlo simulations remains an important option. The use of congested network assignment 
for travel time and cost feedbacks (which vary by route, and by time of day and day of week), and 
application of the Bayesian Melding approach (which allows for dynamic forecasting, over time, but 
requires knowledge of intermediate-period outputs, for comparison) may provide useful extensions.
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