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Demonstration of the United States Road 
Assessment (usRAP) as a Systematic Safety Tool 
for Two Lane Roadways and Highways in Kansas
by B.G. Nye, E.J. Fitzsimmons, and S. Dissanayake

The United States Road Assessment Program (usRAP) is a systematic tool that determines areas of 
risk based on roadways characteristics. To determine the effectiveness of the usRAP tool, three rural 
two-lane corridors, a US highway, a Kansas highway, and a rural secondary road, were selected for 
this study. Data collection for the usRAP software included manual speed data collection, system-
wide centerline miles and crashes, crash costs, countermeasure costs, and manual roadway coding 
data every 100 m. The usRAP software evaluated and developed a star rating and a Safer Roads 
Investment Plan for each corridor. 

BACKGROUND

According to the National Highway Traffic Safety Administration (NHTSA), in 2012, approximately 
19% of the United States population lived in a rural area, but crashes in rural settings accounted 
for 54% of all traffic fatalities (National Highway Traffic Safety Administration [NHTSA] 2014). 
Due to the high percentage of rural fatalities compared to the population, rural road and highway 
vehicle crash prevention are topics of serious concern for state transportation agencies, counties, 
and local jurisdictions (Kansas included). During the 2013 calendar year, the 2013 Kansas Traffic 
Accident Facts developed by the Kansas Department of Transportation (KDOT) reported 36.4% 
of the approximately 5,525 crashes occurred on rural roads (KDOT 2014). The 2,011 crashes on 
rural roads accounted for 231 fatal crashes, or 70.6% of the total number of fatal crashes in Kansas 
(KDOT 2014).

Between 2005 and 2013, the total number of fatal crashes decreased from 276 to 231, respectively, 
while urban fatal crashes have remained relatively unchanged (KDOT 2014). The reduction in fatal 
rural crashes could be in part from the implemented safety programs, including a primary seat 
belt law, implementing FHWA Every Day Counts (EDC) programs, updating the Kansas Strategic 
Highway Safety Plan (SHSP), and identifying and improving high risk rural roads (HRRR).

The state of Kansas has a population of 2.85 million and a total of 714 cities (most under 
5,000 population) over 82,278 square miles (United States Census 2010). Many rural Kansas 
residents use the state highway or paved secondary system to travel to larger communities. The 
Kansas road network comprises a significant amount of rural paved two-lane roads with posted 
speed limits of 55 mph. Due to the remote locations of rural roadways and minimal traffic, response 
time from emergency medical services (EMS) is often longer because crashes may go unnoticed 
for extended periods of time. Therefore, identification, prioritization for safety improvements, 
and implementation of roadway safety countermeasures before vehicle crashes occur is crucial to 
increasing rural roadway safety.

Identification of safety improvement locations on roadways have traditionally used hot spot or 
mass-action area determination from past crash data. However, crash data in rural settings tend to be 
sparse because of the low traffic volumes associated with rural roadways and crashes that may occur 
once every five years or more. To identify the locations of a probable crash location, a systemic and 
systematic approach that utilizes the roadway and intersection characteristics, opposed to crash data, 
should be used. 
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LITERATURE REVIEW

Since the late 1980s, data about crashes and roadway characteristics have been collected and used 
by the Federal Highway Administration (FHWA) to help make policy decisions and by engineers 
researching highway safety (Tan 2011). One such database, in 1987, was the Highway Safety 
Information System (HSIS). HSIS collected crash, roadway, and traffic volume data from Illinois, 
Maine, Michigan, Minnesota, and Utah based on the availability, quantity, and quality of the data 
(Tan 2011). 

With the creation of the databases, two different approaches have been traditionally used to 
determine safety concerns on roadways: crash mass action areas and systematic analysis of roadway 
characteristics. Crash hot spot analysis identifies locations that result in a high number of crashes 
based on previous crash data. Whereas, a systematic analysis of roadway characteristics identifies 
locations where crashes could potentially occur based on different variables associated with the 
roadway. SafetyAnalyst and FHWA geographical information system (GIS) using HSIS data are 
being used to identify crash hot spots, while road assessment programs and run-off-road models are 
used to identify safety concern locations.

SafetyAnalyst

Harwood et al. (2010a) developed SafetyAnalyst, an analytical tool to assist in the decision-making 
process when identifying and managing site-specific, system-wide improvements. To determine 
where crash spot locations are, a network-screening tool uses traffic volumes and other roadway 
characteristics to identify sites with higher-than-expected and expected levels of crash frequencies. 
The tool can also identify sites with severe crashes and a high percentage of specific crash types. 
The network-screening tool focuses on identifying spot locations and short segments with potential 
for safety improvements. The network-screening tool can also identify large sections of roadway.

SafetyAnalyst closely refers to the Highway Safety Manual (HSM) and the FHWA’s Interactive 
Highway Safety Design Model (IHSDM). All three tools extensively use safety performance 
functions (SPFs) and accident modification factors (AMFs) to predict crash frequency and severity 
(Hardwood et al. 2010a). SafetyAnalyst was created to improve effectiveness in decision-making 
and to strengthen support for the decisions made. Long-term viability of SafetyAnalyst is determined 
by continuous software enhancements to meet users’ evolving needs (Hardwood et al. 2010a).

FHWA GIS and HSIS

In 1999, the FHWA integrated GIS capabilities with the HSIS to create a crash analysis tool. The 
integrated system used traditional GIS features to spatially located crash locations and information 
using crash analysis tools. The tools allow engineers to evaluate crashes at a user designated spot, 
crashes along a segment, crashes near a certain roadway feature, and crashes along a specified 
corridor (FHWA 1999). 

Road Assessment Programs

In 1999, the road assessment program known as EuroRAP was created. The program analyzes 
specific information on roadway viewable physical characteristics. The characteristics range from 
vertical and horizontal alignment to objects near the roadway that could be struck by a motorist who 
leaves the roadway. Different values are assigned to the characteristics and used by the software 
to calculate a risk. Once the risks have been calculated, the software applies a benefit-cost ratio to 
different countermeasures and suggests countermeasures to be analyzed by an engineer (Harwood 
et al. 2010b). 
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Run-Off-Road Model

Gao, Kan, Li, and Pang (2008) developed a run-off-road (ROR) prediction model using roadway 
geometry, traffic volume, crashes, roadside hardware, and features from 31 rural two-lane 
highways totaling 704 km. Road data were categorized into more than 900 sections in order to 
analyze the collected data. The model predicted ROR accident frequency, fatality, and injury using 
four statistical distributions: Poisson, negative binomial, zero-inflated Poisson, and zero-inflated 
negative binomial. Because ROR crashes occur infrequently, the researchers used zero-inflation 
distributions. They concluded that horizontal curves, vertical grade, traffic volume, and proportion 
of trucks were primary factors in ROR crashes. However, it was found additional research is needed 
to improve the ROR prediction models.

Road Safety Audit

A roadway can also be analyzed using a road safety audit (RSA). An RSA is a formal safety evaluation 
of an existing road or intersection conducted by an independent team of highway engineers and 
traffic safety experts. The ideal team consists of a road safety specialist, a traffic operations engineer, 
a road design engineer, a local contact person, and additional experts depending on the size and 
complexity of the project.

Once an RSA team is formed, a formal meeting is conducted to set the context of the audit 
and review the project information. The RSA team must then conduct a field investigation. Two 
approaches are typical for the field review. For the first approach, each individual member of the 
RSA team independently conducts a review of the roadway and then come together as a team to 
review each identified issue. The second approach requires the RSA team to review the site as a 
group and note each issue the team encounters. After reviewing all issues, the RSA team finalizes 
the findings and develops possible solutions (FHWA 2006).

RESEARCH OBJECTIVES

The primary objective of this research project was to demonstrate the effectiveness of the United 
States Road Assessment Program (usRAP) as a systemic safety tool for rural highways and paved 
secondary roads in Kansas. The goal was to determine if usRAP and its outputs beneficially help 
Kansas counties identify high-risk roadway segments without using historical crash data at each 
corridor. Secondary objectives included determining if usRAP was a viable tool to include in state 
and county level safety planning and seek feedback on the usRAP outputs by the local road engineer 
of the Kansas Association of Counties.

EMPIRICAL SETTING

Study Corridors

Three study corridors in Kansas were selected for evaluation in this study to represent three common 
roadways found in Kansas: a U.S. highway, a Kansas highway, and a rural secondary road. All three 
roads were two-lane undivided roadways outside of incorporated areas. The roadways were selected 
based on driving experience and visual investigation. Crash data were not used to identify roadways 
evaluated in this study

The first corridor selected was US-40 from Topeka to Lawrence. US-40 serves as a commuter 
route that has an annual average daily traffic (AADT) of 5,000 vehicles (KDOT n.d.). The study 
segment had a length of 19 miles and a posted speed limit of 60 mph. The research team conducted 
a speed study and found the average speed of vehicles was 61 mph with an 85th percentile speed of 
64 mph. During the study, crash data from 2010 – 2014 were collected. There were a total of 236 
crashes with one resulting in a fatality and six resulting in a disabling injury. 
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The second corridor selected was K-5 between Kansas City and Lansing. The corridor was 
unique because of several horizontal curves (left and right) and vertical curves (up and down) that 
produced multiple blind spots in both directions of travel. K-5 had an AADT of 2,500 vehicles with 
a posted speed limit of 55 mph. A speed study conducted by the research team found the average 
speed to be 51 mph with an 85th percentile speed to be 57 mph. The study team hypothesized the 
average speed was lower because drivers on K-5 are aware of the constant changes in horizontal and 
vertical alignment. Crash data between 2010 and 2014 showed there was a total of 75 crashes with 
three resulting in a disabling injury crash.

The final corridor selected for this study was RS 20 and RS 25 between Lancaster and Effingham. 
At the intersection of RS 20 and RS 25, there is a horizontal curve that connects the two roads to 
bypass a four-way stop.  RS 20 and RS 25 have an AADT of 750 and 850, respectively, and both 
roads have a posted speed limit of 55 mph. A speed study conducted by the research team found 
the average speed to be 57 mph with an 85th percentile speed of 61 mph. To determine the number 
of crashes along the route, data were manually extracted from county crash records. From 2010 to 
2014, there were a total of 35 crashes resulting in one disabling injury crash.

usRAP Calibration

To achieve the most accurate results, a calibration using local data (crash costs/frequency and 
countermeasure costs) is required. In Kansas, the cost of a crash varies with the severity. A property 
damage only crash has an estimated cost of $3,200, while a fatal crash would have an estimated 
cost of $4,159,950. These values are used in estimating the benefit portion of the benefit-cost ratio.

To calibrate the crash frequency used by the software, crash information for U.S. highways 
in Kansas and Kansas highways was collected. For U.S. highways in Kansas, there were 21,305 
crashes between 2010 and 2014 resulting in 264 fatal and 455 disabling injury crashes (KDOT 2014). 
Kansas highways had a total of 15,048 crashes between 2010 and 2014 resulting in 162 fatal and 
353 disabling injury crashes (KDOT 2014). KDOT had limited crash data outside of incorporated 
areas. Therefore, for this study, default calibration parameters were used based on AADT, roadway 
type, and posted speed limit.

The usRAP software incorporates 192 built-in countermeasures for urban and rural environments. 
These countermeasures range from low cost to high cost, which may range from signs to large 
reconstruction projects, respectively. Each countermeasure has a low, medium, and high cost that 
can be adjusted prior to software coding. Of the 192 possible countermeasures, the research team 
selected 70 countermeasures that were applicable to Kansas rural environments. The research team 
then met with KDOT’s Bureau of Local Projects to verify countermeasure costs. All countermeasure 
costs provided by KDOT were considered to be medium costs, and the low and high costs for each 
countermeasure were determined by a percentage decrease or increase, respectively. 

CODING METHODOLOGY

Prior to coding the three Kansas corridors, the research team participated in a two-day training 
administered by a private consulting firm. The private consulting firm team, consisting of experts in 
the development, testing, and implementation of usRAP and iRAP, presented a manual that explained 
each variable the research team was to code. The usRAP software relies on a visual inspection of the 
roadway and judgment by the research team, so examples presented by the private consulting firm 
team ranged from open space to dense vegetation. Based on previous studies, a coding time of 30 
minutes per one mile was estimated for this project.

The coding environment for the usRAP software involved using two monitors displaying 
the coding screen and a view from Google Street View, as shown in Figure 1. The research team 
coded each variable based on a 100m segment of the roadway. For each variable, there was a drop- 
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Figure 1: Example Display of Monitors During Coding Process
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down menu with options to best describe the roadway characteristics. For example, roadside object 
severity could range from a cliff or tree in the most severe case, to no object within range of a driver 
that has left the roadway.  After all variables for a segment have been coded, the variables can be 
carried through to the next segment. This allowed the research team to cut down on the total time 
spent on each segment. For consistency in coding the roadway, the direction of coding was in the 
direction of increasing milepost markers.

To assure the highest quality results, three stages of quality assurance/quality control (QA/QC) 
were completed. The first stage took place during the initial coding of the variables. The research 
team worked in groups of two to discuss which variables would be the most appropriate for the given 
segment. After completion of a roadway, the code was sent to the principle investigator (PI) to verify 
the coded variables for half-mile intervals. If a disagreement was found between coded variables, 
the PI would adjust the segment and surrounding segments to better match the roadway segment’s 
characteristics.  Finally, the coded variables were sent to a private consulting firm to ensure each 
segment was coded accurately before data were uploaded to the usRAP website for analysis.

RESULTS OF SELECTED KANSAS CORRIDORS

usRAP

Using the coded data and operational characteristics for each corridor, the usRAP program determines 
a road protection score for each segment of the roadway using built-in modeling algorithms. The 
road protection score is based on coded variables having a known impact or relationship with crash 
occurrence and the probability a segment would have high risk of a serious injury or fatal crash. 
Determination of risk is translated into a star ranking (AAA 2012 and Knapp et al. 2014). The star 
ranking is a color coded and numerical ranking (1 to 5, with 1 being the highest risk) indicator of 
risk for a segment of roadway.

The usRAP program also generates a Safer Roads Investment Plan, which provides information 
on countermeasures previously selected that could be implemented to reduce the probability of there 
being a fatal or serious injury crash on a certain segment. The Safer Roads Investment Plan also 
provides a benefit cost ratio, location, and total length for each countermeasure selected, and a total 
benefit cost ratio if all countermeasures selected were implemented. Most countermeasures dictate 
which side of the road on which to implement the countermeasure using the terms driver side or 
passenger side. The driver side and passenger side are representative of the direction of coding of 
the roadway. For example, if the coding direction was east, the driver side would be on the north and 
passenger side would be on the south. For this study, the Safer Roads Investment Plan only showed 
countermeasures with a benefit cost ratio greater than 1.

Star Rating and Safer Roads Investment Plan

Figure 2 through 4 show the star ratings for the three corridors selected in this study. Each delineated 
segment shown has a number that corresponds with its star rating. The usRAP program generates a 
star rating map for vehicle occupants, motorcycles, bicycles, and pedestrians. However, the analysis 
showed minimum change in those areas. The usRAP website overlays the results on top of Google 
Maps, allowing users to zoom in to specific roadway segments and view attributes and nearby 
physical features. 

Figures 2a and 2b show the star rating before and after countermeasure implementation, 
respectively, of US-40.  As shown in Figure 2a, approximately 67% (19.4km) of the corridor 
was considered 2 stars or lower. Lower star ratings (labeled with the number 1) occurred around 
horizontal curves and on segments of roadways containing differing roadway geometry and 
entrances to businesses.
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Figure 2: Before and After Star-Rating for US-40

a) Before Countermeasures

b) After Countermeasures

To increase the star rating and reduce the number of fatal and serious crashes on the corridor, the 
usRAP Safer Roads Investment Plan suggested 10 different countermeasures. Each countermeasure 
suggested shows the number of suggested sites (represented by length), total number of fatal or 
serious injury (FSI) crashes saved (over a 20-year period), benefit, estimated cost, cost per FSI 
crash saved, and total benefit cost ratio. For example, the countermeasure with the highest benefit 
cost ratio was to clear roadside hazards on the passenger side. The usRAP program estimated 
there was 13.60km (136 100-meter segments as shown in Figure 5) where implementation of the 
countermeasure would prevent five FSI crashes over a 20-year period. Figure 2b shows the star rating 
of US-40 if all countermeasures suggested by Safer Roads Investment Plan were implemented. After 
countermeasure implementation, approximately 12% (3.2km) of the corridor was considered 2 stars 
or lower. The usRAP program estimated the total cost to implement all suggested countermeasures 
to be $870,987; however, the total estimated benefit was $3,747,370 and a total benefit cost ratio of 
approximately 4.
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Figure 3: Before and After Star-Rating for K-5

a) Before Countermeasures

b) After Countermeasures
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a) Before Countermeasures

b) After Countermeasures

Figure 4: Before and After Star Rating for RS 20 and RS 25

Figures 3a and 3b show the star rating before and after counter implementation, respectively, of 
K-5. As shown in Figure 3a, 100% (16.2km) of the corridor was considered 2 stars or lower (2 being 
second highest risk). A 1-star rating (1 on figures) represented areas with combined horizontal and 
vertical curves that produced areas with limited sight distance. 

The Safer Roads Investment Plan for K-5 suggested 13 different countermeasures to reduce the 
total number of FSI crashes. The countermeasure with the highest benefit cost ratio was to improve 
roadway markings (delineation) on two curves. The usRAP software estimated the total cost to 
improve the delineation to be $6,046 but have a benefit of $76,040, resulting in a benefit cost ratio of 
approximately 13. One of the curves suggested for improved curve delineation had a slight vertical 
curve reducing sight distance as shown in Figure 6. Figure 3b shows the star rating of K-5 if all 
countermeasures suggested were implemented. If all countermeasures are implemented, 100% of 
the roadway would have a 3-star ranking and an estimated 11 FSI crashes would be prevented over 
a 20-year period. The implementation of all countermeasures would cost an estimated $1,182,692, 
but would have a total estimated benefit of $3,449,729 and have a benefit cost ratio of 3. 

Figures 4a and 4b show the star rating before and after countermeasure implementation, 
respectively, of RS 20 and 25. As shown in Figure 4a, 100% (9.8km) of the corridor was considered 
to be 1-star. RS 20 and 25 is a rural secondary road with no delineation on the roadway and little to 
no shoulder before the drop off into the ditch along the roadway.

The Safer Roads Investment Plan for RS 20 and 25 suggested five different countermeasures. 
The countermeasure with the highest benefit cost ratio was improved curve delineation at the 
intersection of RS 20 and 25. However, on both RS 20 and 25, there were several large culverts 
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Figure 5: Recommended Locations of “Clearing Roadside Hazard – Passenger Side”
	 for US-40

Figure 6: Google Street View of the Curve Selected for Improved Delineation

(greater than 10-feet tall) that did not have a barrier and had a drop-off less than three feet from 
the edge of the roadway. The usRAP’s Safer Roads Investment Plan suggested implementing a 
roadside barrier on both sides of that roadway at the culverts. The roadside barriers would prevent 
an estimated two FSI crashes over a 20-year period. Figure 4b shows the star rating of RS 20 and 
25. After implementation of all suggested countermeasures, 100% of the roadway remains a 1-star 
rating. However, the star rating for this particular roadway can be misleading. If all countermeasures 
were implemented, a total of three FSI crashes could be prevented with a total benefit cost ratio of 
2. The star rating map suggests the roadway would need to be completely upgraded to the standards 
of a two-lane highway or higher to enhance the star ratings.
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The usRAP results for RS 20 and 25 were validated by comparing the results to a road safety 
audit (RSA) conducted by KDOT on May 12, 2014. The RSA and usRAP software identified areas, 
including the need for improved curve delineation and a roadside barrier. However, the usRAP 
program was not able to identify specific areas found during the RSA. For example, a failed wing 
wall section on a box culvert was not identified. There are two significant factors for not identifying 
specific areas. The usRAP program is designed to identify potentially high-risk areas based on 
characteristics of the roadway such as geometry, markings, and roadside hazards such as fixed 
objects. The other factor is the limited field of view by Google’s Street View camera and its field of 
vision.

DISCUSSION

Understanding the safety risks of rural highways and paved secondary roadways is critical in Kansas 
because a significant percentage of roadways are rural centerline miles. However, allocation of 
funding for roadway improvements and determination of locations in need of improvements can be 
difficult due to limited data, limited expertise, and sometimes-unknown areas that pose a significant 
risk to drivers. A systematic tool that utilizes limited information (specifically historical crashes) to 
identify high risk areas can greatly benefit a local jurisdiction or the State of Kansas if even one life 
is saved or one serious injury is prevented. 

The research team selected three corridors to test the usRAP software: A U.S. highway, a Kansas 
highway, and a paved rural secondary road. US-40 between Topeka and Lawrence, K-5 from Kansas 
City and Lansing, and RS 20 and 25 between Lancaster and Effingham, were selected based on 
previous driving experience and visual inspection from the research team. The amount of available 
data (crash or otherwise) were not used in the selection of the three corridors.	

The usRAP program is a free software program that requires extensive data entry based on 
Google Street View or manual data collection for 100m intervals. Corridor baseline data are needed 
for system calibration (type of highway or roadway), including AADT, posted and 85th percentile 
speed, system-wide centerline miles for each roadway type, system-wide historical crash analysis 
for types of transportation modes, and typical countermeasure costs. A significant advantage of 
the usRAP program is that the program does not require historical crash data for the road segment 
or corridor of interest. The usRAP software analysis is based on roadway characteristics directly 
related to crashes.

The usRAP software outputs provide valuable information that can be easily interpreted for 
most levels of roadway design and/or supervision. Outputs include a star rating for each corridor 
every 100m and a Safer Roads Investment Plan for each corridor. The usRAP software is not 
designed to replace a required engineering study before implementation of any major roadway 
countermeasure or geometric change. Rather, the usRAP software output identifies potentially risky 
areas of a corridor to help guide a transportation study.

The star ratings developed for the three corridors provide a visualization of potential risky areas 
for each corridor. Each of the three corridors selected had 3-star or lower segments for the entirety 
of the corridor because the roads were not interstates or divided highways. The three corridors 
also exhibited vast differences in horizontal and vertical alignments, in which these corridors were 
narrow with fixed objects near the roadways. This led to different star ratings for the three roadways.

The Safer Roads Investment Plan shows different countermeasures that can be implemented 
along with the estimated cost, the estimated benefit, the benefit-cost ratio, and an estimate of the 
number of fatal or serious crashes prevented over a 20-year period for each countermeasure. The 
usRAP software benefits counties with limited resources to invest in a countermeasure because it 
narrows down the location of countermeasure implementation and reduces the time, money, and 
initial investigations required for engineering studies.



United States Road Assessment

74

Finally, the usRAP software predicted a star rating for each corridor if all countermeasures 
above a benefit-cost ratio of 1 were implemented. Although substantial improvements were 
predicted for US-40 and K-5, RS 20 and RS 25 were predicted to remain constant because substantial 
reconstruction was needed to upgrade the safety of the corridor. However, upgrading certain areas 
on the corridor may not bring the segment to a 2-star or higher rating, it could save a life or prevent 
a serious injury.

References

American Automobile Association (AAA) Foundation for Traffic Safety. Guide to Using usRAP 
Star Ratings and Safer Roads Investment Plans. Washington, D.C.: Federal Highway Administra-
tion, 2012.

Federal Highway Administration. FHWA Road Safety Audit Guidelines. Washington, D.C.: Federal 
Highway Administration, 2006.

Federal Highway Administration. GIS-Based Crash Referencing and Analysis System. McLean, VA: 
Turner-Fairbanks Highway Research Center, 1999.

Gao, H., W. Kan, C. Li, and C. Pang. “Run-Off-Road Accident Prediction Model for Two-Lane 
Highway.” Journal of Highway and Transportation Research and Development 3(1), (2008): 110-
115.

Harwood, D.W., D.J. Torbic, K.R. Richard, and M.M. Meyer. Safety Analysis: Software Tools for 
Safety Management of Specific Highway Sites. Washington, D.C.: Federal Highway Administration, 
2010a.

Harwood, D.W., D.K. Gilmore, K.M. Bauer, R.R. Souleyrette, and Z.N. Hans. U.S. Road Assess-
ment Program (usRAP) Pilot Program – Phase III. Washington, D.C.: American Automobile As-
sociation Foundation for Traffic Safety, 2010b.

Kansas Department of Transportation (KDOT). Kansas Traffic Accident Facts Book. Topeka, KS: 
Kansas Department of Transportation, 2014.

Kansas Department of Transportation (KDOT). District Traffic Count Maps, n.d.  Accessed Novem-
ber 2, 2015 ksdot.org/burtransplan/maps/MapsTrafficDist.asp.

Knapp, K.K., S. Hallmark, and G. Bou-Saab. Systemic Safety Improvement Risk Factor Evaluation 
and Countermeasure Summary (Report No. WBS: 25-1121-0003-140). Lincoln, NE: Mid-America 
Transportation Center, 2014.

National Highway Traffic Safety Administration (NHTSA). Traffic Safety Facts: 2012 Data Rural/
Urban Comparison. Washington, D.C.: United States Department of Transportation, 2014.

Tan, C.H. Highway Safety Information System (HSIS): The Essential Information System for Mak-
ing Informed Decision about Highway Safety. Washington, D.C.: Federal Highway Administration, 
2011.

United States Census. 2010 United States Census. Population, Housing Units, Area, and Density: 
2010 – State – Place and (in Selected States) County and Subdivision, 2010.



75

JTRF Volume 56 No. 1, Spring 2017

Benjamin Nye is a graduate research assistant in the department of civil engineering where he is 
pursuing a master of science degree in civil engineering. He received his bachelor’s degree in civil 
engineering in 2016. His research interests are highway safety and capacity, railroad engineering, 
and roadway geometrics.

Eric Fitzsimmons’ research interests include highway safety and operations in both rural and 
urban environments. His research has been funded by state departments of transportation, the 
Federal Highway Administration, NCHRP, and university transportation centers. Some research 
examples he has conducted or are in progress include development and analysis of vehicle 
trajectory along horizontal curves, wrong-way driving crashes, usRAP demonstration in Kansas, 
traffic calming applications, micro-simulation of access management, automated enforcement, 
work zone applications including temporary traffic signals and transportation management plan 
(TMP) strategies, vehicle data collection, big data applications in highway operations, railroad 
engineering, and engineering education. 

Dr. Fitzsimmons has authored and/or co-authored 15 journal papers, 26 research reports, and 
over 30 conference manuscripts, and holds one patent pending of a self-deicing traffic signal he co-
invented with two of his colleagues at the University of Kansas. He is highly active in professional 
activities and is an associate member of American Society of Civil Engineers, a member of the 
Institute of Transportation Engineers, and a member of the American Society of Engineering 
Education. Fitzsimmons currently serves as a member of multiple Transportation Research Board 
standing committees including: Operational Effects of Geometrics (AHB65), Access Management 
(AHB70), and Traffic Law Enforcement (ANB40).

Sunanda Dissanayake is a professor and graduate program director of civil engineering at Kansas 
State University (KSU), specializing in the area of transportation engineering. She obtained her 
bachelor’s degree in civil engineering from the University of Moratuwa, Sri Lanka; a master’s 
degree in transportation engineering from the Asian Institute of Technology, Thailand; and a 
doctorate degree in civil engineering from the University of South Florida. Her research focuses on 
studies related to solving applied and practical problems related to transportation engineering, with 
particular emphasis on traffic operations and safety of the highway mode. She has been a Fulbright 
scholar and was recently appointed as a high-end foreign expert in traffic safety and as a member 
of the First Advisory Board for Joint International Research Lab of Transportation Safety at Tongji 
University in Shanghai, China. 

She has authored and co-authored more than 40 journal papers and presented more than 135 
papers at national, international, and regional conferences, most of which are proceedings papers. 
She is highly active in several professional societies, a member of two journal editorial boards, a 
member of two TRB technical committees, and the chair of the Transportation Safety Committee 
of ASCE/T&DI. She has won the Outstanding University and Professional Service Award, Advisor 
of the Year Award, Outstanding Teacher Award, and Outstanding Researcher Award at KSU civil 
engineering department several times. She has successfully completed numerous externally funded 
research projects in the area of transportation engineering and teaches courses related to those 
topics at KSU, preparing the future generation of civil engineers ready for the real world. 


