Creation of Truck Axle Load Spectra Using Weigh-in-Motion Data

Authors

  • Yi Jiang
  • Shuo Li
  • Tommy Nantung
  • Kirk Mangold
  • Scott A. MacArthur

DOI:

https://doi.org/10.5399/osu/jtrf.47.4.1121

Abstract

To assure a smooth transition from the existing pavement design methods to the new mechanistic-empirical design method in the Indiana Department of Transportation, a study was conducted to create truck traffic inputs and axle load spectra of major interstate and state-owned highways in Indiana. The existing pavement design method is based on the equivalent single-axle loads (ESAL), which converts wheel loads of various magnitudes and repetitions to an equivalent number of "standard" or "equivalent" axle loads. The new design method uses axle load spectra as the measure of vehicle loads on pavements. These spectra represent the percentage of the total axle applications within each load interval for single, tandem, tridem, and quad axles. In this study, the truck traffic and axle load spectra were developed based on the historical traffic data collected at 47 sites with weigh-in-motion technology. The truck traffic information includes hourly, daily, and monthly distributions of various types of vehicles and corresponding adjustment factors, the distributions of the number of axles of each type of truck, the weights of the axles, the spaces between the axles, the proportions of vehicles on roadway lanes, and the proportions of vehicles in driving directions. This paper presents the truck traffic and axle load spectra generated from the weigh-in-motion sites as required by the new pavement design method.

Downloads

Published

2010-12-16

Issue

Section

Articles